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Abstract: Multivariable nonlinear systems identification is addressed, in the following, by means 
of enhanced multiobjective evolutionary optimisation. The paper suggests a customised genetic 
programming algorithm that generates nonlinear linear in parameter models, according to a 
mathematical pattern that has been proven to be a universal approximator. In order to efficiently 
exploit the parameter wise linearity, the authors propose a symbiosis between the genetic operators 
and a local optimisation procedure based on QR decomposition. This hybridisation provides 
simultaneous structure selection and parameter computation, whilst facilitating the unsupervised 
exploration of the search space. Model assessment is conducted relative to accuracy and 
parsimony evaluation criteria. The latter has been specifically tailored to encourage the gradual 
elimination of insignificant model regressors, while preserving the ones which best capture the 
nonlinear dynamics of the plant, thus rendering the suggested method suitable for identifying 
multivariable systems, even in the presence of extraneous lags. In order to make the proposed 
approach compatible with the particular requirements of the identification problem, within the 
framework of automatic control, the authors have introduced two additional enhancements, 
namely a dynamic clustering procedure and an adaptive migration mechanism. The performances 
of the suggested algorithm are revealed by three applications of different complexities: an 
academic test case featuring an increased number of inputs with time delay and a complex 
nonlinear industrial plant. 

Keywords: genetic programming, multiobjective optimisation, nonlinear systems identification, 
multivariable systems. 

 

1. INTRODUCTION 

Complex nonlinear systems are involved in almost all 
engineering applications of an industrial nature. Such 
systems often feature numerous inputs and outputs, 
complex nonlinearities, and operate within noisy 
environments, thus, the obtaining of a sound 
mathematical model is a complicated undertaking, yet 
necessary for efficient plant exploitation. In this context, 
the preferred identification method should be capable of 
dealing with scarce a priori system wise information and 
of providing effective model structure and parameter 
selection, at an acceptable computational cost.  
A way of complying with all the aforementioned 
requirements is to consider a general structure template, 
able to offer the approximation of any bounded nonlinear 
function, with any desired degree of accuracy. This 
general template is to be configured for each particular 
identification problem to solve, the main difficulty 
consisting in choosing the adequate structure between 
numerous possible ones. The present paper exploits the 
nonlinear linear in parameters template, proven to be an 
universal approximator.  

The first attempt in using this mathematical formalism, 
recommended in the related literature, was based on 
determining model parameters starting from preset 

structures, the success of the identification process being 
entirely dependent on the accuracy of the initial structure 
choice. To solve this inconvenience, a NARMAX 
(Nonlinear Auto-Regressive Moving Average for 
eXogenous inputs) based methodology was perfected, 
considering a very complex initial model structure, under 
the assumption that all alien terms would be assigned 
insignificant coefficients, therefore baring little, if any 
influence, on the performances of the final model. This 
tool managed to eliminate the necessity of successive 
structure swaps, yet the increased size of the considered 
model structure and the post design term reductions are 
noticeable drawbacks.  

The next step in system identification is represented by 
GP (Genetic Programming) related techniques (Flemming 
and Purshouse, 2002). Conceptually, the approach is 
centred on Koza’s idea of encrypting a potential model in 
the form of a tree. A whole population of such trees is 
generated and evolved over generations, thus maintaining 
a variety of simple and flexible possible structures, each 
with its own set of optimum parameters. From one 
generation to the next, the trees are evolved according to 
the Darwinian principle of the survival of the fittest, 
which, in computational terms, is enforced by one or 
several objective functions (Coello Coello  et al., 2007). 
Should one tree manage to meet the requested demands, it 



 
 

     

 

will be encouraged to pass on to the reproduction pool 
and participate in the generation of offspring. In this 
context, researchers developed the MOO (Multi Objective 
Optimisation) approach to GP based identification. It 
involves the use of several assessment criteria exploited 
from a Pareto optimal, dominance analysis based 
standpoint (Wey et al., 2004). Deb refined the procedure 
by introducing a highly accurate fitness assignment 
technique based on static niching (a niche is a reference 
distance in the objectives space), resulting in a much more 
effective tree evaluation (Deb, 2001). 

The method proposed by the authors incorporates all the 
advantages of the previous tools developed in the field, 
while introducing several enhancements of its own. The 
two objectives employed by the enhanced MOO 
procedure are accuracy and parsimony. As, within the 
field of automatic control, the accuracy of a system model 
is most important, although the complexity criterion is not 
to be neglected either, the suggested algorithm makes use 
of two innovative upgrades in order to dynamically 
increase the priority of the accuracy objective. Firstly, a 
dynamic clustering technique is employed to divide the 
population in distinct batches, undergoing a differentiated 
evaluation process meant to encourage the production of 
accurate and reasonably parsimonious individuals. 
Secondly, every few generations, trees migrate in between 
the complementary batches, in amounts dynamically 
dictated by their average complexity, which allows the 
unsupervised balancing of the objectives’ priorities.  
Additionally, the authors have proposed an adaptation 
mechanism meant to guarantee a nonlinear linear in 
parameter compliance of all trees at all times. The 
suggested upgrade also facilitates the use of a local 
optimisation procedure based on QR decomposition, 
aimed at rapidly computing an optimum set of parameters 
for each tree encrypted model structure. Also, the genetic 
operators have been specifically tailored to preserve the 
positive effects of the QR decomposition procedure, as 
well as effectively improve the model structure relative to 
the considered objectives. 

The paper is organized as follows. Section 2 summarizes 
the mathematical background of nonlinear models, linear 
in parameters. The main steps of the genetic loop are 
reviewed in section 3, while the detailed description of the 
implemented algorithm enhancements is presented in 
section 4. Section 5 discusses several experimental results 
which illustrate the applicability of the proposed design 
procedure, whereas the conclusions are outlined in section 
6. 

 
2. NONLINEAR MODELS 

 
A multivariable nonlinear model, linear in parameters, 
having m inputs and n outputs can be described by the 
following equation: 
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where vector x contains lagged inputs and output values:  
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In (1) and (2), iŷ  and iy specify the ith model output and 

the ith plant output, respectively, mju j ,, 1=  denotes 
the jth plant input, nu and ny stand for the maximum 
allowed lags for the system inputs and outputs and, 
finally, k specifies the current sampling time. It has been 
proven that the nonlinear linear in parameter models are 
capable of approximating any nonlinear continuous 
bounded function, to any desired degree of accuracy 
(Back et al., 2000). 

Functions Fiq are nonlinear atoms (regressors), consisting 
in combinations of terminals, to any exponent and lag, 
connected by multiplying operators only (Madar et al., 
2005). Consequently, the system model is a linear 
combination of such regressors, more compactly 
described by: 
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The model structure is encapsulated by the regressors of 
all matrices Fi, ni ,1= . Maintaining their diversity falls 
under the care of genetic operators, customized to better 
fit the specifics of the linear in parameter formalism. For 
advantageous parameters calculation, a local optimisation 
procedure based on QR decomposition is applied, acting 
as a Lamarckian local optimisation mechanism during the 
evolutionary loop. Note that, if 1>n , the algorithm will 
run n times, generating a separate model for each output 
of the system, therefore encoding a single matrix Fi at a 
time. 
 

3. MULTIOBJECTIVE OPTIMISATION 
 

In order to generate a convenient model, the algorithm 
requires two sets of experimental data collected during the 
target system’s exploitation, which completely illustrate 
the process behaviour - one used for the 
training/evaluation stage and the other used for the model 
validation stage. Both sets comply with the following 
pattern: 

      pkkkS nm ,..,1,,))},(),({( =ℜ∈ℜ∈= yuyu .   (5) 

Other prerequisites consist in the maximum input and 
output lags, nu and ny. However, these algorithm 
parameters are application dependent, closely related to 
the desired model complexity and accuracy. They can be 
determined as a result of trial and error off-line 
experiments, at a negligible supplementary cost (Back et 
al., 2000). Moreover, the algorithm is capable of 



 
 

     

 

preserving the terminals with the most significant 
contribution to the final model’s performances, gradually 
eliminating the others. Therefore, nu and ny are not 
necessarily required to be minimum. 

As models are compliant with (1), GP considers the 
terminal set x indicated in (2) and an operator set 
containing addition and multiplication, O = {+, *}, for 
building the tree-like individuals. Each possible structure 
results as a recursive combination of terminals connected 
by operator nodes. To allow the generation of convenient 
models, sets x and O should be compliant with closure 
and sufficiency requirements (Koza, 1992). As set O is 
minimally sufficient, the second desiderate is met if 
enough lagged terms are included in the terminal set x. 
Note that it is not a prerequisite to work with a minimally 
sufficient x set, though any “alien” element could affect 
the exploration capabilities of the algorithm. The specific 
choice of the two sets, described above, combined with 
the flexible way the trees get built, ensures a compact 
final model, making post design simplifications 
unnecessary.  

The next step consists in building the initial batch of tree 
encrypted potential models. As there is no way of 
knowing the particular sub-domain of the problem space 
where the solution might be situated, the trees are spread 
evenly across the whole search space, to ensure 
heightened exploration capabilities. Afterwards, the entire 
lot of trees is sent to the reproduction pool where the 
individuals undergo the effects of the genetic operators: 
crossover and mutation. The result is the generation of 
new trees, called offspring, some with better 
performances than those of their parents. The children get 
reunited with their parents in an intermediary population 
that constitutes the raw genetic material to be processed, 
in order to obtain the individuals of the next generation. 

It is a known fact that overfitted models which offer a 
good approximation of the training data set could suffer 
from poor generalization capabilities (Rodriguez-Vasquez 
et al., 2004). To diminish the risk of producing too 
complex structures as an effect of crossover, the problem 
is formulated as a multiobjective optimisation, addressing 
both accuracy and parsimony, by means of two objective 
functions, namely the Squared Error Function (SEF) and 
the Complexity Function (CF): 
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Here, M denotes a possible model encoded by a tree-
based individual and z specifies the number of its 
regressors.  

Because the considered objectives are conflicting (it is 
highly unlikely to find a solution that is both accurate and 
simple), the problem admits an infinite set of optimal 
solutions, called Pareto-optimal set. Therefore, the 
multiobjective optimisation procedure has to generate, as 
a final result, a whole set of possible models, each of 

them representing a possible trade-off between accuracy 
and parsimony. Moreover, this set must be as close as 
possible to the Pareto optimal front.  

Deb’s concept based on dominance analysis may be used 
to conduct a Pareto optimal wise evaluation of the trees. 
The idea of this multiobjective approach (MOO) is 
graphically illustrated in Fig. 1. Inside a finite population 
P of individuals, a solution is called nondominated if it is 
better adapted than any other individual of population P, 
with respect to at least one objective function. All 
nondominated individuals (denoted 1 4 in Fig. 1) are 
separated from the current population and included in the 
first order front. They are assigned the highest fitness 
values. In order to differentiate between the trees of the 
same front, Deb suggests a fitness assignment scheme that 
favours the solitary individuals rather than the ones 
crowded in clusters. By doing so, trees with few or no 
neighbours (tree 1 in Fig. 1) are encouraged to survive 
and to produce offspring in their own vicinity, thus 
populating the depleted regions of the front. After fitness 
values are computed for all individuals of the first order 
front, the procedure is repeated over the remaining 
population, by separating the second order front and so 
on. Once every tree in the current population has been 
assessed, their fitness values are used as selection 
probabilities at insertion stage. 
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Fig. 1. Fronts of various orders separated within a finite 
population. 

 
4. ALGORITHM ENHANCEMENTS 

 
The suggested method operates with two categories of 
enhancements. The first exploits the parameter wise 
linearity of the generated models and includes customized 
genetic operators and a raw to regressive adaptation 
procedure which facilitates the hybridisation with a local 
optimisation procedure based on QR decomposition. 
Their goal is to increase the algorithm’s convergence 
speed, as well as to expand its exploration efficiency. The 
second group of enhancements focuses on upgrading the 
MOO procedure, in order to enforce a higher priority to 
the accuracy objective, therefore concentrating the models 
towards the interest region of the Pareto optimal front 
(models marked with “o” in Fig. 3). 

Given the formalism (1), the models are supposed to 
encode polynomial regressors. Yet, because the 



 
 

     

 

individuals are built as recursive combinations of 
terminals from x set, a transformation is required in the 
tree-encoded model, in order to achieve parameter wise 
linearity. The trees are turned from terminal-based 
structures into equivalent regressor-based structures, 
exploiting the equation: 

                         cabacba ⋅+⋅=+⋅ )(               (8) 

After the transformation, “+” nodes will no longer be 
positioned as successors of “*” nodes. On a particular 
tree, given its current structure, QR decomposition aims at 
determining the best achievable parameters, in terms of 
SEF minimization. Evolving the structure into a fitter one, 
for which the local optimisation procedure would be able 
to yield better parameter values, falls under the care of 
genetic operators. 
 
The crossover operator selects one cut point in each of the 
two selected parents and then swaps the resulting 
subtrees, thus producing two new individuals, called 
offspring. Towards the end of the evolutionary process, 
the trees become extremely well adapted and might 
encode very similar regressors. In that context, if the cut 
point selection is conducted in a purely random fashion, 
there is a good chance that the resulting subtrees might 
encode the same regressors, with similar coefficients. 
Such a swap would be completely irrelevant in terms of 
population diversity, as it would bring neither any fresh 
genetic material, nor any improvement of accuracy. 
Therefore, the crossover operator has been upgraded in 
order to detect such “problem” cut points and to eliminate 
them from the potential cut point list, prior to the actual 
subtree swap.  
 
In Fig. 2, nodes 5, 6, and 7 of the first parent encode the 
same regressor as nodes 4, 5 and 6 of the second parent. 
The roots of the two similar regressors, along with all the 
other nodes on the path to the parent root will be 
eliminated from the potential cut point lists, for both 
parents.  
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Fig. 2. Parents in the reproduction pool. 
 
This is meant to protect the similar nonlinear atoms from 
crossover, as it is most likely that they represent well 
adapted regressors with a positive influence on the 
model’s overall accuracy. Moreover, the performances of 
QR decomposition are decreased on structures with 
duplicate regressors. Ergo, the list of potential cut nodes 
must be reduced as described above, thus protecting the 
algorithm from redundant or harmful swaps on the one 
hand, and taking up less computational resources on the 

other hand, due to the “guided” nature of the cut point 
search operation. 

Enhancing the crossover operator facilitates an efficient 
cooperation with QR decomposition, yet it does not rule 
out the compensation phenomenon, also encountered 
towards the end of the evolutionary loop. This problem 
occurs when the same accuracy might be achieved by 
replacing an entire combination of regressors with only 
one regressor with a different coefficient or exponent. To 
keep this under control, the mutation operator has been 
upgraded to allow punctual modifications of terminal 
exponents, as well as terminal names. 

The second category of enhancements complies with the 
specific context of systems identification, by emphasizing 
the accuracy criterion over the parsimony one. Based on 
that remark, several techniques have been implemented to 
increase the priority of the SEF objective function within 
the context of dominance analysis. Right after generation, 
the initial population is split into two subpopulations. The 
first is evolved via a Single Objective Optimisation 
(SOO) procedure that only considers the accuracy 
objective measured by SEF. The second subpopulation 
undergoes a MOO procedure based on a customized 
dominance analysis. More precisely, the MOO 
subpopulation is divided into two groups (Fig. 3), 
depending on the SEF and CF values of the trees in it. 
The ones that feature lower objective values than the g1 
and g2 thresholds, respectively, will be assigned fitness 
values based solely on SEF. The remaining individuals 
are divided into different order fronts and assigned a 
fitness value, as described in section 3. 
 

           

g1

g2 

group 1

group 2 

CF 

SEF

 
Fig. 3. Grouping within MOO subpopulation. 
 
The two considered clustering parameters, g1 and g2 
respectively, are computed in a dynamic manner, 
depending on the diversity of the current population. If 
the variance of the Euclidian distances between all the 
trees is low, that is interpreted as a sign that the 
individuals are close together in the objectives space. 
Therefore, g1 and g2 will be computed as the average SEF 
and CF values relative to the entire population. Should the 
variance of the Euclidian distances be high, then the trees 
are far apart in the objectives space. In this last case, the 
two thresholds cannot be defined in the same way as 
described above, as that would result in a biased 
clustering. Therefore, g1 is assigned the mean SEF value 
relative to the two individuals furthest apart, while g2 is 
computed in a similar way, considering the CF objective. 



 
 

     

 

To increase the selection pressure in favour of the 
accuracy objective, once every no_migr generations a 
migration occurs, namely the SOO and MOO 
subpopulations exchange their best individuals. The 
number of trees that migrate from one subpopulation to 
the other is determined via a performance dependent 
adaptive threshold procedure. Three preset migration rates 
are considered, as follows: rate1 = 10%, rate2 = 20% and 
rate3 = 25%. If the average complexity of the SOO 
population is below that of the MOO population, then 
many of the simple and accurate trees evolved solely via 
SEF have a good chance of being included in the first 
group (Fig. 3). Therefore, the maximum allowed 
percentage (25%) of SOO trees will migrate to the MOO 
population, whilst only 10% will be sent the opposite 
direction. The second possibility is that of an average 
SOO complexity comparable to the MOO one, leading to 
a 20% migration rate in both directions. Finally, if the 
SOO trees are substantially more complex than the MOO 
ones, then their chances of being included in group 1 (Fig. 
3) and of populating the interest region of the first order 
front are slim. Only 10% of the SOO trees will migrate 
towards the MOO population, while 25% simpler, yet less 
accurate trees will be sent the opposite direction. 
 

5. APPLICATIONS 
 

The algorithm’s performances were tested within 
experimental trials targeting two multivariable systems: a 
five input one output linear system with dead time and an 
industrial subsystem from the Evaporation Station (ES) of 
the sugar factory in Lublin, Poland.  

Neglecting its dead time (equal to 1 sec), the linear 
system considered for preliminary verifications can be 
described by the following input-state-output 
representation: 
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The training data set is built considering pulses of 
different magnitudes and widths, applied on both system 
inputs, subject to 05.0=sT  sampling period. For 
validation, step response is considered. The discrete time 
model of the system, with a delay of 1 sec, and the 
specified sampling period Ts, results: 
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The identification procedure ran over 30 generations, 
considering nu = 25, ny = 5 and activating migration once 
every no_migr = 5 generations, and was able to select an 
accurate and simple final model (Mean Relative Error 
(MRE) = 0.5% on validation data set, 18 regressors).  
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As the identification procedure was not provided with an 
a priori information as to the existence of dead time, the 
trees in the initial population each contained different 
combinations of all the terminals in the x vector 
(considering all lags from 1 to 25 for the five inputs, and 
from 1 to 5 for the output). Yet, as shown by (11), the 
algorithm was capable of gradually eliminating the 
unnecessary terminals, in an unsupervised way. 
Therefore, the method’s capacity of automatically tuning 
model features that are not known pre-design is shown on 
this simple example. 

Another issue that is easier to illustrate on this example, 
due to its simplicity, is the role of the adaptive threshold 
migration procedure within the evolutionary loop, 
outlined in Table 1. Here, MRE indicates the model 
performances on the training/validation data set. Usually, 
the average accuracy of the SOO subpopulation is, as 
expected, better than the one of the MOO counterpart. 
However, the migration from the SOO subgroup towards 
the MOO one is encouraged only if the average 
complexity is smaller (generation 5) or almost equal 
(generation 20). As a result, the final model is a valid 
trade-off between accuracy and parsimony.  

Fig. 4 shows the generalization capabilities of the 
obtained model, specifically its capacity of accurately 
approximating the dead – time zone. Without any prior 
knowledge regarding the dead time and/or the system 
order, the algorithm was capable to determine the 
appropriate model structure and parameters, in a 
completely unsupervised manner. 
 

Table 1. Migration scheme for time-delayed system 
 

average 
CF 

average 
SEF 

migration 
rates 

gen.
SOO MOO SOO MOO 

SOO 
to 

MOO 

MOO 
to 

SOO 
5 30 35.6 22.8 18.1 0.25 0.1 

10 25.5 20.2 10.5 20.1 0.1 0.25 
15 19 23.2 7.5 12.5 0.1 0.25 
20 19 18.9 5.5 7.3 0.2 0.2 
25 18.5 19 3.2 6.5 - - 
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Fig. 4. Multivariable linear system – validation. 
 
The other identification experiment involves a much more 
complex nonlinear system, with no available 
mathematical model. The Control Valve (CV) subsystem 
of Lublin sugar factory has two inputs, namely the 
sucrose juice level in the first section of the ES and the 
pressure at the entry point in the ES. The system output is 
the juice flow sent back to the entry point in the ES. 
Training and validation data sets were acquired during 
different production shifts of plant exploitation (Deb, 
2001).  

The tests conducted on the control valve subsystem are 
aimed at assessing the enhanced MOO procedure’s 
capacity of dealing with numerous input terminals. On the 
one hand, the existence of two inputs instead of just one 
implies an increased number of terminals to be considered 
in the tree-encrypted models, in other words, an increased 
number of regressors. On the other hand, imposing high 
values for the maximum input and output lags should 
compel the algorithm to produce even more complex 
individuals. However, experiments show (Table 2) that as 
the input and output lag values increase (M1 M3), the 
final model complexity and accuracy tend to stay 
approximately the same. This behavior is explained by the 
dual character of the tree population. Exchanging genetic 
material between SOO and MOO subpopulations brings 
slightly more weight to the accuracy objective, whilst 
keeping the complexity target in focus. Therefore, the 
exceedingly complex trees are gradually eliminated, 
leading towards final models which combine the 
advantages of both SOO and MOO procedures, namely 
high accuracy, as well as reduced complexity. It is not 
recommended to increase the maximum lags over a 
certain limit (M4), as this may increase the risk of 
producing overfitted models which, in most cases, feature 
poor generalization capabilities.  

A way of providing the enhanced MOO procedure with 
enough time and genetic material to yield viable models is 
to increase the maximum number of generations as well 
as the number of trees per generation. Doing so results in 
improved model accuracy and parsimony (M5 M7). 
Though, if these parameters are increased excessively, a 
saturation phenomenon may emerge, as the 
supplementary genetic material becomes redundant (M7 
and M8). The experimental data to support the 
conclusions above is included in Table 2. All the results 

above have been obtained using 290 data points for both 
training and validation. The accuracy of model M5 on the 
validation data set is shown in Fig. 5 
 

Table 2. Enhanced MOO models for CV subsystem 
 

MRE (%) model 
ID 

individuals/ 
generations

input lag/ 
output lag training validation

M1 30/30 nu = 2, ny = 2 0.23 1.32 

M2 30/30 nu = 3,ny = 2 0.31 1.20 

M3 30/30 nu = 5,ny = 3 0.27 1.21 

M4 30/30 nu = 10,ny =9 0.20 5.01 

M5 50/50 nu = 2,ny = 2 0.21 1.30 

M6 70/70 nu = 2,ny = 2 0.15 1.25 

M7 70/90 nu = 2,ny = 2 0.09 1.22 

M8 100/150 nu = 2,ny = 2 0.11 1.21 
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Fig. 5. Control valve model – validation data set. 
 

6. CONCLUSIONS 
 
The evolutionary identification tool proposed by the 
authors is specifically tailored to provide models for 
multivariable nonlinear systems. The algorithm performs 
an unsupervised selection of accurate and simple models, 
thus being able to reduce the risk of overfitting or 
compensation phenomena.  

The linear in parameter formalism adopted by the 
generated models facilitates the use of QR decomposition 
for faster parameter computation. To ensure enhanced 
exploration capabilities in producing compact model 
structures, customized crossover and mutation are 
suggested. Consequently, the simultaneous improvement 
of the model structure and parameters takes up less 
computational resources. 

Employing a conjoint SOO and MOO evolution scheme 
fits the specific requirements of systems identification by 



 
 

     

 

increasing the weight of the accuracy objective without 
completely ignoring the importance of the parsimony one. 
Specifically, this goal is achieved by employing a 
dynamic clustering technique based on population 
diversity assessment via probabilistic indicators, an 
approach that encourages the production of compact yet 
flexible models, featuring good performances on both 
training and validation data sets. 

Although time and resource consuming, the algorithm is 
suitable for complex data driven identification problems 
that involve heightened accuracy requirements or when 
no rich a priori system information is accessible.  
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