

Updates Concerning Numerical Calculus Through
Numerical Engineering Software

Romulus Militaru *, Liviu-Adrian Călin**,
George-Cristian Călugăru ***, Adrian-Lorel Georgescu***

*Department of Applied Mathematics, University of Craiova, Romania (e-mail: militaruromulus@yahoo.com)
**Faculty of Mathematics and Computer Science, University of Craiova, Romania

(e-mail:adi.calin.nds@gmail.com)
***Faculty of Automatics, Computers and Electronics, University of Craiova, Romania

(e-mail: {calugaru.george.nds , georgescu.adrian.nds}@gmail.com)

Abstract: Numerical Engineering Software is a dedicated solution for numerical calculations. The
project contains many numerical methods that have been optimized and can represent the basis for
numerical solving of real life technical problems. An earlier version of Numerical Engineering
Software was presented in the previous number of this journal. This paper is dedicated to the
presentation of the new abilities of Numerical Engineering Software which can appeal to a larger
number of users and can result in improved processing of data. The new version consists of a
slightly modified structure, mainly regarding the fifth chapter which now deals with systems of
differential equations and Sturm-Liouville problems. The project consists of five chapters: Matrix
Algebra, Polynomial Approximations, Roots of Equations, Numerical Integration and Differential
Equations.

Keywords: numerical calculus, linear systems, polynomial interpolation, eigenvalues and
eigenvectors, differential equations, mathematical software

1. DESCRIPTION OF NUMERICAL ENGINEERING
SOFTWARE

Numerical Engineering Software (NES) is a project
dedicated to solving numerical analysis problems which
can relate to real-life technical problems. The project has
evolved through several stages of development starting
with a prototype and ending with the current version. The
prototype consisted of a small project affected by many
restrictions of the implemented methods which were very
few and its sole purpose was to serve as an experiment
regarding the interface. The software solution we propose
must have a user-friendly interface which needs no prior
programming skills and even has a Romanian version in
order to appeal to a larger number of users that need to
solve technical problems with the least amount of effort
possible. Once the frame of the interface was set and a
pattern emerged, several development stages occurred
focused on selection and optimization of methods,
Militaru (2009). For instance, we figured that the input
data should be inducted in the simplest way possible. On
this subject we experimented with a text editor resulting
in the ability to store data in special „.nes” extension files,
„nes” standing for Numerical Engineering Software.

Numerical Engineering Software runs as a cross platform
application with proficient results on Windows, Solaris
and Linux.

Strictly regarding the numerical algorithms implemented
the first idea of optimization we had was imposing the
precision of calculation for the processed data. We
achieved just that in most of the implemented methods
reaching precisions of up to 15 decimal places depending
on the given problem.

The next aspect of optimization was improving the
computational cost of the algorithms selected for
implementation. In some cases, we had to choose one
method for solving one specific problem from a range of
methods dealing with that specific problem and in this
case the selection was based on inherent computational
cost. In other cases, the method used for approaching a
specific problem was subject to improvements regarding
its computational cost.

For more complex problems such as superior order
differential equations we developed our one procedures
starting from a 4-th order Runge-Kutta algorithm which is
widely used in practice, Burden (2004), Philips (1999).
The same algorithm was used for the development of the
system of differential equations procedure.

One of the most particularized methods which is now
implemented in Numerical Engineering Software is the
method regarding Sturm-Liouville problems with the
mention that the methods deals with all types and
coefficients.

The last stage of optimization was the invention of
numerical methods to deal with specific problems. In this
case, so far, we developed the Militaru method for the
calculation of extreme eigenvalues of a real, square,
symmetric matrix, Militaru (2006).

These were the principles of optimization used to improve
the quality and appeal of Numerical Engineering
Software. A section of the present paper will be dedicated
to presenting the improvements and particularizations of
Numerical Engineering Software.

Further development sessions will take place focusing on
transfer function processing, non-linear equations and
systems of equations and improvements regarding general
appearance and graphic visualizations.

2. NUMERICAL METHODS IMPLEMENTED IN
NUMERICAL ENGINEERING SOFTWARE

2.1 Matrix Algebra

The notion of matrix is one of the fundamental elements
of mathematics. The processing of matrices is essential in
many calculations that find applicability in many areas
from computer science to engineering.

The calculation of a linear algebraic system can be used
for the solving of problems depending on a finite number
of freedom degrees, represented through ordinary
differential equations or through equations with partial
derivates are transformed with the help of finite
differences into linear systems. This type of systems can
also be used in electrical wiring studies, structure
analysis, building projects etc.

The part of control engineering that relies on the study of
systems as abstract entities is called system theory.
According to system theory, Marin (2007), there are many
types of systems: continual, discrete, with distributed
parameters, with concentrated parameters etc. An
important aspect in system theory is the study of the
properties of a system. In the case of a linear system, the
study of stability can be performed, in this case stability
being a system property. In the case of non-linear
systems, stability ceases to be a system property and is
studied for every evolution. To study the stability of a
system we have two types of criteria: algebraic and
frequency related. Algebraic criteria are applied on the
characteristic polynomial and stability is demonstrated
through solving determinants. The two main algebraic
criteria are called Routh and Hurwitz and are based on the
solving of determinants, respectively of the Routh table.
Other properties of systems that can be determined by
solving determinants are the controllability and
observability properties.

Equilibria can be studied with the help of the signs of the
eigenvalues belonging to the linearization of the equations
about the equilibria. That is to say, for every equilibrium
point the Jacobian matrix must be evaluated, and then,

after finding the resulting eigenvalues, the equilibria can
be categorized. Then the behaviour of the system in the
neighbourhood of each equilibrium point can be
determined from the quality point of view, (or even
quantitatively determined, in some instances, by finding
the eigenvector(s) associated with each eigenvalue). An
equilibrium point is hyperbolic if none of the eigenvalues
have zero real part. If all eigenvalues have negative real
part, the equilibrium is a stable node. If at least one has a
positive real part, the equilibrium is an unstable node. If at
least one eigenvalue has negative real part and at least one
has positive real part, the equilibrium is a saddle point. If
all eigenvalues are identical null we have an equilibria
line.

The methods included in the first chapter are:

1. Gauss elimination method of inverting a matrix;

2. iterative method of inverting a real matrix;

3. iterative Seidel-Gauss method for large real linear
systems;

4. iterative Seidel-Gauss method for real sparse matrix
linear systems;

5. LR factorization for solving a real linear system;

6. LR factorization for solving real tridiagonal matrix
systems;

7. LR factorization for solving real pentadiagonal matrix
systems;

8. Fadeev method for determining the characteristic
polynomial of a real square matrix;

9. Danilevski method for estimating the eigenvalues and
corresponding eigenvectors for a real square matrix;

10. LR method for the estimating the eigenvalues of a real
square matrix (covering all particular cases);

11. Militaru method for the calculation of the extreme
eigenvalues of a real symmetric matrix (based on
successive approximations);

12. Krylov method for the calculation of the characteristic
polynomial;

13. Leverrier method for the calculation of the
characteristic polynomial;

14. Jacobi method for estimating the eigenvalues of a real
symmetric matrix;

15. QR factorization for solving a real linear algebraic
system;

16. LR method for estimating the eigenvalues of a real
square matrix;

17. QR method for matrix transformations;

18. Matrix transformations through a triangularization
procedure;

19. A triangularization procedure for solving a real linear
algebraic system;

20. A pivotal condensation method for the numerical
calculation of a real square matrix determinant.

This chapter has considerably grown in size. From the
previous number of the journal, methods 12 to 20 have
been implemented in this chapter and another method for
the calculation of the pseudo-inverse of a matrix is
currently being refined and prepared for implementation.
The Matrix Algebra chapter of NES approaches a wider
range of problems and offers true support regarding
accuracy of results.

2.2 Polynomial Approximations

In control engineering in general and in signal processing
(SP) in particular we can view the interpolation table as a
series of samples acquisitioned from a signal with a given
sampling period. The sampling frequency must be at least
double the size of the signal frequency. In practice, the
sampling frequency is sometimes more than tens of times
bigger. If the sampling frequency is less than double than
the frequency of the signal, then the so called aliasing
phenomenon occurs. The aliasing phenomenon can be
interpreted as ambiguity in the frequency domain.
Looking at it from a systemic point of view, the aliasing
phenomenon represents a pole expansion. Marin (2007)

The sampling process is the basis for numerical
computers and automation equipment today, mostly
because a sampled signal is easier to use and store.

Given an interpolation table, values from the first column
(x) can be interpreted as sampling moments and the
second column (f(x)) can be interpreted as the values of a
signal a certain moment in time. It is recommended that
the sampling period be uniform.

Using Numerical Engineering Software you can take a
table of such samples, insert it in a special extension
”.nes” file characteristic to the software, process it and
view the original shape of the signal or determine the
value of the signal at another moment in time, all of them
with an imposed accuracy.

This is how the interpolation procedures can be used as a
solution for a technical problem.

The methods included in this chapter, Chatelin (1983),
Leader (2004), Militaru (2008):

1. Lagrange interpolating polynomial;

2. Discrete least square approximation;

3. Newton interpolating polynomial;

4. Cubic Spline with free boundary;

5. Cubic Spline with clamped boundary.

The graphic approximation section is very flexible and
allows 2D graphs to be configured with the help of

several options. These options allow the user to select the
colour and step length of the represented graphic profile.

This chapter doesn’t contain any new methods but
significant improvements have been made to the ones
already implemented. The Newton and Lagrange
interpolating polynomials now posses the ability of
imposing precision of calculation which is the ultimate
improvement regarding interpolation procedures, Militaru
(2003).

2.3 Roots of Equations

Methods for finding roots of equations are basic
numerical methods.

Over the centuries, mathematicians have developed a
variety of methods of solving equations. Numerical
methods for locating roots of equations can often be
easily programmed. Using the capabilities of modern
computers, one can explore in detail these age-old recipes
(capabilities, restrictions, speed of convergence).

The methods included in this chapter are, Demidovici
(1973), Ebâncă (2005):

1. Bairstow method for the calculus of the roots (real or
complex) of an algebraic equation;

2. Bernoulli root finding method.

The user has the possibility to impose the precision of the
estimations of the roots.

The Bernoulli root finding algorithm is newly inducted in
Numerical Engineering Software.

2.4 Numerical Integration

The need to approximate the definite integral of a
function often arises in the case when the function has no
antiderivative or the antiderivative is difficult to
manipulate numerically, and also in the case of a function
known only for her values in a discrete set of data points,
whose antiderivative is no longer possible to determine.

From the control engineering point of view simple
integrals can define optimization or robust control criteria
which have to be minimized or maximized depending on
the type of problem:

The methods included in this chapter are:

1. Newton integration method for the numerical
evaluation of a simple integral;

2. a method for the numerical evaluation of a double
integral over a measurable convex domain with polygonal
boundary.

The development of this chapter has been finalized by
improving the method for evaluating double integrals
over measurable convex domains with polygonal
boundary. The method now contains a procedure which
allows imposing the accuracy of the calculus and now the
method enjoys proficient results.

2.5 Differential Equations

Differential equations play a major role in scientific
calculations and mathematical representations.

In system theory, linear differential equations with
constant parameters are used to describe linear time
invariant SISO (Single Input-Single Output) systems.
Systems of ordinary differential equations can describe
linear time invariant MIMO (Multi Input-Multi Output)
systems, Marin (2006). Partially differential equations are
used to describe distributed parameters systems.

Differences equations are used to describe discrete
systems.

In control engineering, system engineers deal mostly with
non-linear phenomena. However, in some conditions a
non-linear mathematical model can be very good
approximated through a linear model, Marin (2007).

Ordinary or partially differential equations represent
mathematical models for the majority of mechanical and
electrotechnics engineering problems: the study of efforts
to which resistance elements are exposed: bars, pillars,
thin plates, thick plates, pipes; the study of electrical
fields in dielectrics problems, magnetic and thermal
fields, the propagation of all types of waves and the list
goes on.

Once the physical phenomenon and the differential
equations that govern it, boundary conditions and
coefficients are stated, only one issue remains: the solving
of this mathematical model. For various reasons: physical
differences, boundaries with an unusual geometry etc., the
solving of this mathematical model will consist of the
search for an approximate solution using numerical
computation.

The methods included in this chapter are, Militaru (2008),
Popa (2010), Press (2007):

1. Euler method for the solving of a Cauchy I-st order
problem;

2. Runge-Kutta 4-th order method for solving Cauchy I-st
order problems;

3. a Runge-Kutta 4-th order based method for the solving
of superior order differential equations;

4. a Runge-Kutta 4-th order based method for the solving
of systems of differential equations;

5. a finite difference method for solving a Sturm-
Liouville problem.

Since the previous number of this journal, methods 3 to 5
have been implemented successfully. Because of the
implementation of the method for dealing with Sturm-
Liouville problems the original name of the chapter of
Cauchy Problems has been extended to that of
Differential Equations.

This chapter has been, by far, the most challenging part of
the development of Numerical Engineering Software. We
developed specialized numerical functions based on
methods like the Runge-Kutta 4-th order, for the
evaluation of high order differential equations and
systems of differential equations.

In the case of Sturm-Liouville problems the implemented
method is based on finite differences and is appropriate
for every type of boundary conditions (Neumann,
Dirichlet or mixed).

The way of inducting data is very simple and natural,
constituting an advantage of Numerical Engineering
Software.

3. THE INTERFACE OF NUMERICAL
ENGINEERING SOFTWARE

As we described in the previous number of this journal,
Militaru (2009b), the interface of Numerical Engineering
Software consists of dedicated application windows. Each
application window is composed of drop-down menus
and option buttons. Drop down menus are generally
placed in an application window to select the method of
calculation. The rest of the options are present because
they represent parameters or restrictions of a given
method.

Each particular application window emerged from a need
to bring the options closer to the user.

For ease of understanding and for better display of the
benefits of Numerical Engineering Software we will focus
mainly on the application window present in the
Romanian version of the software.

Fig. 1. Calculating the inverse of a matrix using NES

Fig. 2. Militaru method for the estimation of the extreme
eigenvalues of a real symmetric matrix

Fig. 3. Solving a linear algebraic system through LR
factorization

Fig. 4 . Calculating a matrix determinant in Numerical
Engineering Software using the .nes files

Fig. 5. Lagrange interpolation procedure for a function
together with the graphic profile visualization.

Fig 6. Evaluating a simple definite integral using NES

Fig. 7 Numerical solving of a high order initial value
problem using NES

Fig. 8. Numerical Solving of a system of ordinary
differential equations

4. OPTIMIZATION IN NUMERICAL ENGINEERING
SOFTWARE

Optimization in the version of Numerical Engineering
Software presented in the previous number of this journal
resumed to the following aspects, Militaru (2009b):

1. Initial value problems for high order differential
equations are solved numerically through a compact
procedure based on a Runge-Kutta IV-th order method,
depending only on the order of the equation and the
integration step length imposed by the user.

2. Runge-Kutta method (IV-th order) allow the display of
the approximate values of the exact solution belonging to
an initial value problem for ordinary differential equations
with an integration step length selected by the user. The
algorithm has been improved in order to approximate the
values of the exact solution of the given Cauchy problem,
within a given accuracy, imposed by the user. The
computational cost of algorithm is minimal.

3. Danilevsky method determines the coefficients of the
characteristic polynomial, the eigenvalues and the
corresponding eigenvectors for any real square matrix. All
the particular cases are taking into consideration, the
algorithm having a minimal cost of computation.

4. LR factorization method allows the estimation of the
eigenvalues of a real square matrix. The algorithm gives
the possibility of working with a given precision. It is
complete with all particular cases and has a minimal cost
of computation.

5. Militaru method, Militaru (2008), allows the numerical
approximation of the extreme eigenvalues of a real
symmetric matrix with a given precision, by a trace
computation. The algorithm avoids the determination of
the coefficients of the characteristic polynomial of the

given matrix, or the use of similarity transformations,
with the purpose of eliminating the intermediate stages of
calculation which lead to numerical instabilities,
contributing in the decrease of the amount of work. Thus,
the algorithm benefits from an optimum cost of
computation.

6. Lagrange polynomial interpolation allows the
approximation of a function f given only for a discrete
set of points which make up a sample. The algorithm
evaluates the value of the function in a given data point z,
based on a Lagrange interpolating polynomial, having
incorporated a procedure which offers to user the
possibility to impose the degree of the interpolating
polynomial, Militaru (2003). Thus, the algorithm exploits
better the results of calculus, contributing to a decrease in
the amount of work involved, respectively the
computational cost necessary to approximate)(zf
within a given accuracy. One can also visualize the
approximate profile of the function with an option for
scaling the graph and several other appearance options.

The same characteristics are also valid for the case of
Newton polynomial interpolation.

Further aspects of optimization include:

- Design of a compact procedure for the calculus of
systems of differential equations, RK4 based.

- Design of a compact procedure for solving of Sturm-
Liouville problems.

- Lagrange and Newton interpolating polynomials now
require precision of calculation instead of the degree of
the approximating polynomial.

- Double integral evaluation includes now precision
requirement.

- Several modifications in matters of interface.

5. NUMERICAL EXAMPLES

5.1 Electrical Engineering

The currents)(1 ti and)(2 ti in the left and right loops of
a closed circuit containing a resistance, a capacitance, an
inductance and a voltage source, verify the following 2-nd
order initial value problem:

⎪
⎩

⎪
⎨

⎧

==
++−=

++−=

0)0(;0)0(
6.3)(6.1)(4.2)('

6)(3)(4)('

21

212

211

ii
tititi

tititi

Assuming that the switch in the circuit is closed at time
t=0, we are looking to estimate the values of the currents

)(1 ti ,)(2 ti at the moments 9,1 ,1.0 =⋅= iiti .

Using NES we obtain the following approximations:

Table 1. Numerical evaluations and errors for the system
of differential equations

t)(1 ti)(2 ti error1 error2

0.1 0.5482 0.3261 0.005 0.002

0.2 0.9847 0.5793 0.007 0.003

0.3 1.3305 0.7735 0.008 0.004

0.4 1.6027 0.9201 0.008 0.005

0.5 1.8152 1.0283 0.009 0.005

0.6 1.9795 1.1056 0.009 0.005

0.7 2.1048 1.1582 0.007 0.004

0.8 2.1985 1.1910 0.006 0.004

0.9 2.1985 1.1910 0.006 0.004

(error1 and error2 represents the absolute value of
differences between the exact values of the currents snd
theirs numerical approximations).

5.2 General Engineering

1. We consider the steady state heat transfer process in a
long, thin bar, and we assume that the cross-sections of
the bar are uniform, and that the temperature varies only
in the longitudinal direction. We also assume that the bar
is perfectly insulated, except at the ends. Supposing the
cross-section area 2210 mA −= and the
length mL 5.0= , we intend to calculate the steady-state
temperature of the bar. The left end is fixed at

C0300 and the right end at C0700 . We are looking to
evaluate the temperature distribution along the rod,
supposing a constant thermal conductivity k .

The steady-state temperature)(xTT = verifies the
following boundary value problem:

⎩
⎨
⎧

==
∈=−

700)(;300)0(
),0(,0)(''

LTT
LxxkT

Observation: The exact solution is given by
300800)(+= xxT .

Using NES and imposing a discretization of the interval
],0[L into 10 equal subintervals one obtains:

Table 2. Numerical results for the above Sturm-Liouville
problem

ix iT

0.05 340

0.1 380

0.15 420

0.2 460

0.25 500

0.3 540

0.35 580

0.4 620

0.45 660

(iT denotes the approximate value of the temperature in

the point of abscise ix).

One observes that the numerical results are in very good
agreement with the exact ones.

2. Let the following boundary value problem:

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=−
=+

∈
+

−
+

−=

2794.0)1(')1(2
4413.0)0(')0(

)1;0(,
1

1)('
1

2)('' 22

yy
yy

x
x

xy
x
xxy

We are looking to approximate the values of the exact
solution)(xy of the above problem in the points

*N ,/1 ,,0 , ∈==⋅= nnhnihixi

We consider 20=n . Using NES we obtain

Table 3. Boundary value problem results and errors for
the given Sturm-Liouville problem

ix iy error

0.05 0.0211 0.0003

0.1 0.0393 0.0003

0.15 0.0549 0.0003

0.2 0.0678 0.0003

0.25 0.0781 0.0003

0.3 0.0858 0.0003

0.35 0.0910 0.0002

0.4 0.0940 0.0003

0.45 0.0946 0.0002

0.5 0.0932 0.0002

0.55 0.0899 0.0002

0.6 0.0849 0.0002

0.65 0.0783 0.0002

0.7 0.0702 0.0001

0.75 0.0609 0.0001

0.8 0.0505 0.0001

0.85 0.0391 0.0001

0.9 0.0268 0.0001

0.95 0.0137 0.0001

 Observations:

(i). error represents the absolute value of difference
between the exact value of)(xy and the numerical
approximation;

(ii). The exact solution is given by

)1ln(5.0)(4413.0)(2xxarctgxy +−=

5.3 General Engineering

We intend to evaluate the following double integral

∫∫ +=
D

dxdyyxI arcsin , where the domain D is

the parallelogram given by the vertices)1;1(−M ,
)1;1(−N ,)1;2(−P ,)1;0(Q .

Using NES one obtains: imposing an accuracy of
310−=ε , 570774.1=I ; imposing an accuracy of
410−=ε , 570797.1=I .

Note: The exact value is 5707963.1=I

6. CONCLUSIONS

Numerical Engineering Software has a steady growth
rhythm and approaches a various range of numerical
methods with value to real-life technical problems.

We emphasis that one of the crucial advantages of
Numerical Engineering Software is the easy to use
interface which facilitates the production of accurate
results over a minimum time span. This means that a user
has to be familiar only with the restrictions and input data
characteristic to every method.

Precision of results is another advantage of NES, most
methods being equipped with the possibility of imposing
accuracy of the results to be obtained.

Strong components of the software project are the highly
informative error messages which automatically point out
the appropriate course of action.

Future development areas include non-linear equations
and systems of equations and considerable improvements
to the overall general appearance with emphasis on
increasing the quality of graphical representations.

REFERENCES

Burden, R.L., Faires, J. (2004), Numerical Analysis,
Brooks Cole.

Ciarlet, P.G. (1990), Introduction à l’Analyse Numérique
et l’Optimisation, Ed. Masson, Paris.

 Chatelin, F.(1983), Spectral approximation of linear
operators, Academic Press, New York.

Demidovici, B., Maron, I. (1973), Elements de Calcul
Numérique, Ed. Mir Moscou.

Ebâncă, D. (2005), Metode numerice in algebră, Editura
Sitech, Craiova.

Ionescu, G., Ionescu, V., s.a (1987), Automatica de la A la
Z, Ed. Stiinţifică şi Enciclopedică, Bucureşti.

Leader, J.J. (2004), Numerical Analysis and Scientific
Computation, Addison-Wesley.

Marin, C., Petre, E., s.a. (2006), System theory problems,
Editura Sitech, Craiova.

Marin, C., Popescu, D. (2007), Teoria sistemelor si
reglare automata, Editura Sitech, Craiova.

Mellor-Crummey, J., Garvin, J. (2004), Optimizing
sparse matrix vector product computations using
unroll and jam, International Journal of High
Performance Computing Applications, 18(2), pg. 25-
236.

Militaru, R. (2008), Méthodes Numériques. Théorie et
Applications, Ed. Sitech,Craiova.

Militaru, R. (2006), On the Newton’s iterative method for
the characteristic equation of a real symmetric
matrix, IEEE Computer Soc., Eighth International
Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC 2006), pg. 175-
180.

Militaru, R. (2003), A polynomial interpolation algorithm
for estimating a numerical function, Annals of
University of Craiova, Math. Comp. Sci. Ser.,
Volume 30(2), pag. 1-7.

Militaru, R., Calin, L.A., Calugaru, G.C., Georgescu, A.
(2009), Efficient Computer Assisted Numerical
Calculus through Numerical Engineering Software ,
Proceedings of the Conference on Applied and
Industrial Mathematics CAIM 2009, Constanta.

Militaru, R., Calin, L.A., Calugaru, G.C., Georgescu, A.
(2009b), Numerical Engineering Software-A New
Tool for the Computer Assisted Numerical Calculus,
Annals of the University of Craiova, Series
Automation, Computers, Electronics and
Mechatronics, vol. 6 (33), No. 1, pg. 59-64.

Philips, G., Taylor, T.(1999), Theory and Applications of
Numerical Analysis, Academic Press.

Popa, M., Militaru R. (2010), Metode numerice în
pseudocod - aplicaţii, Ed. Sitech, Craiova.

Press, H.W., Teukolsky, S.A., Veterling, T.W., Flannery,
B. (2007), Numerical Recipes, 3-rd Edition,
Cambridge University Press.

