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Abstract: Numerical Engineering Software is a dedicated solution for numerical calculations. The 
project contains many numerical methods that have been optimized and can represent the basis for 
numerical solving of real life technical problems. An earlier version of Numerical Engineering 
Software was presented in the previous number of this journal. This paper is dedicated to the 
presentation of the new abilities of Numerical Engineering Software which can appeal to a larger 
number of users and can result in improved processing of data. The new version consists of a 
slightly modified structure, mainly regarding the fifth chapter which now deals with systems of 
differential equations and Sturm-Liouville problems. The project consists of five chapters: Matrix 
Algebra, Polynomial Approximations, Roots of Equations, Numerical Integration and Differential 
Equations.  
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1.  DESCRIPTION OF NUMERICAL ENGINEERING 
SOFTWARE 

Numerical Engineering Software (NES) is a project 
dedicated to solving numerical analysis problems which 
can relate to real-life technical problems. The project has 
evolved through several stages of development starting 
with a prototype and ending with the current version. The 
prototype consisted of a small project affected by many 
restrictions of the implemented methods which were very 
few and its sole purpose was to serve as an experiment 
regarding the interface. The software solution we propose 
must have a user-friendly interface which needs no prior 
programming skills and even has a Romanian version in 
order to appeal to a larger number of users that need to 
solve technical problems with the least amount of effort 
possible. Once the frame of the interface was set and a 
pattern emerged, several development stages occurred 
focused on selection and optimization of methods, 
Militaru (2009). For instance, we figured that the input 
data should be inducted in the simplest way possible. On 
this subject we experimented with a text editor resulting 
in the ability to store data in special „.nes” extension files, 
„nes” standing for Numerical Engineering Software.  

Numerical Engineering Software runs as a cross platform 
application with proficient results on Windows, Solaris 
and Linux. 

Strictly regarding the numerical algorithms implemented 
the first idea of optimization we had was imposing the 
precision of calculation for the processed data.  We 
achieved just that in most of the implemented methods 
reaching precisions of up to 15 decimal places depending 
on the given problem. 

The next aspect of optimization was improving the 
computational cost of the algorithms selected for 
implementation. In some cases, we had to choose one 
method for solving one specific problem from a range of 
methods dealing with that specific problem and in this 
case the selection was based on inherent computational 
cost. In other cases, the method used for approaching a 
specific problem was subject to improvements regarding 
its computational cost.  

For more complex problems such as superior order 
differential equations we developed our one procedures 
starting from a 4-th order Runge-Kutta algorithm which is 
widely used in practice, Burden (2004), Philips (1999). 
The same algorithm was used for the development of the 
system of differential equations procedure.  

One of the most particularized methods which is now 
implemented in Numerical Engineering Software is the 
method regarding Sturm-Liouville problems with the 
mention that the methods deals with all types and 
coefficients.  



 
 

     

 

The last stage of optimization was the invention of 
numerical methods to deal with specific problems. In this 
case, so far, we developed the Militaru method for the 
calculation of extreme eigenvalues of a real, square, 
symmetric matrix, Militaru (2006).  

These were the principles of optimization used to improve 
the quality and appeal of Numerical Engineering 
Software. A section of the present paper will be dedicated 
to presenting the improvements and particularizations of 
Numerical Engineering Software. 

Further development sessions will take place focusing on 
transfer function processing, non-linear equations and 
systems of equations and improvements regarding general 
appearance and graphic visualizations.  

2. NUMERICAL METHODS IMPLEMENTED IN   
NUMERICAL ENGINEERING SOFTWARE 

2.1 Matrix Algebra 

The notion of matrix is one of the fundamental elements 
of mathematics. The processing of matrices is essential in 
many calculations that find applicability in many areas 
from computer science to engineering. 

The calculation of a linear algebraic system can be used 
for the solving of problems depending on a finite number 
of freedom degrees, represented through ordinary 
differential equations or through equations with partial 
derivates are transformed with the help of finite 
differences into linear systems. This type of systems can 
also be used in electrical wiring studies, structure 
analysis, building projects etc. 

The part of control engineering that relies on the study of 
systems as abstract entities is called system theory. 
According to system theory, Marin (2007), there are many 
types of systems: continual, discrete, with distributed 
parameters, with concentrated parameters etc. An 
important aspect in system theory is the study of the 
properties of a system. In the case of a linear system, the 
study of stability can be performed, in this case stability 
being a system property. In the case of non-linear 
systems, stability ceases to be a system property and is 
studied for every evolution. To study the stability of a 
system we have two types of criteria: algebraic and 
frequency related. Algebraic criteria are applied on the 
characteristic polynomial and stability is demonstrated 
through solving determinants. The two main algebraic 
criteria are called Routh and Hurwitz and are based on the 
solving of determinants, respectively of the Routh table. 
Other properties of systems that can be determined by 
solving determinants are the controllability and 
observability properties. 

Equilibria can be studied with the help of the signs of the 
eigenvalues belonging to the linearization of the equations 
about the equilibria. That is to say, for every equilibrium 
point the Jacobian matrix must be evaluated, and then, 

after finding the resulting eigenvalues, the equilibria can 
be categorized. Then the behaviour of the system in the 
neighbourhood of each equilibrium point can be 
determined from the quality point of view, (or even 
quantitatively determined, in some instances, by finding 
the eigenvector(s) associated with each eigenvalue). An 
equilibrium point is hyperbolic if none of the eigenvalues 
have zero real part. If all eigenvalues have negative real 
part, the equilibrium is a stable node. If at least one has a 
positive real part, the equilibrium is an unstable node. If at 
least one eigenvalue has negative real part and at least one 
has positive real part, the equilibrium is a saddle point. If 
all eigenvalues are identical null we have an equilibria 
line. 

The methods included in the first chapter are: 

1. Gauss elimination method of inverting a matrix; 

2.  iterative method of inverting a real matrix; 

3. iterative Seidel-Gauss method for large real linear 
systems; 

4. iterative Seidel-Gauss method for real sparse matrix 
linear systems; 

5.  LR factorization for solving a real linear system; 

6. LR factorization for solving real tridiagonal matrix 
systems; 

7. LR factorization for solving real pentadiagonal matrix 
systems; 

8. Fadeev method for determining the characteristic 
polynomial of a real square matrix; 

9.  Danilevski method for estimating the eigenvalues and 
corresponding eigenvectors for a real square matrix; 

10. LR method for the estimating the eigenvalues of a real 
square matrix (covering all particular cases); 

11. Militaru method for the calculation of the extreme 
eigenvalues of a real symmetric matrix (based on 
successive approximations); 

12. Krylov method for the calculation of the characteristic 
polynomial; 

13. Leverrier method for the calculation of the 
characteristic polynomial; 

14. Jacobi method for estimating the eigenvalues of a real 
symmetric matrix; 

15. QR factorization for solving a real linear algebraic 
system; 

16. LR method for estimating the eigenvalues of a real 
square matrix; 

17. QR method for matrix transformations; 

18. Matrix transformations through a triangularization 
procedure; 



 
 

     

 

19. A triangularization procedure for solving a real linear 
algebraic system; 

20. A pivotal condensation method for the numerical 
calculation of a real square matrix determinant. 

This chapter has considerably grown in size. From the 
previous number of the journal, methods 12 to 20 have 
been implemented in this chapter and another method for 
the calculation of the pseudo-inverse of a matrix is 
currently being refined and prepared for implementation. 
The Matrix Algebra chapter of NES approaches a wider 
range of problems and offers true support regarding 
accuracy of results.  

2.2 Polynomial Approximations 

In control engineering in general and in signal processing 
(SP) in particular we can view the interpolation table as a 
series of samples acquisitioned from a signal with a given 
sampling period. The sampling frequency must be at least 
double the size of the signal frequency. In practice, the 
sampling frequency is sometimes more than tens of times 
bigger. If the sampling frequency is less than double than 
the frequency of the signal, then the so called aliasing 
phenomenon occurs. The aliasing phenomenon can be 
interpreted as ambiguity in the frequency domain. 
Looking at it from a systemic point of view, the aliasing 
phenomenon represents a pole expansion. Marin (2007)  

The sampling process is the basis for numerical 
computers and automation equipment today, mostly 
because a sampled signal is easier to use and store.  

Given an interpolation table, values from the first column 
(x) can be interpreted as sampling moments and the 
second column (f(x)) can be interpreted as the values of a 
signal a certain moment in time. It is recommended that 
the sampling period be uniform.  

Using Numerical Engineering Software you can take a 
table of such samples, insert it in a special extension 
”.nes” file characteristic to the software, process it and 
view the original shape of the signal or determine the 
value of the signal at another moment in time, all of them 
with an imposed accuracy. 

This is how the interpolation procedures can be used as a 
solution for a technical problem. 

The methods included in this chapter, Chatelin (1983), 
Leader (2004), Militaru (2008): 

1. Lagrange interpolating polynomial; 

2. Discrete least square approximation; 

3. Newton interpolating polynomial; 

4. Cubic Spline with free boundary; 

5. Cubic Spline with clamped boundary. 

The graphic approximation section is very flexible and 
allows 2D graphs to be configured with the help of 

several options. These options allow the user to select the 
colour and step length of the represented graphic profile. 

This chapter doesn’t contain any new methods but 
significant improvements have been made to the ones 
already implemented. The Newton and Lagrange 
interpolating polynomials now posses the ability of 
imposing precision of calculation which is the ultimate 
improvement regarding interpolation procedures, Militaru 
(2003).  

2.3 Roots of Equations  

Methods for finding roots of equations are basic 
numerical methods. 

Over the centuries, mathematicians have developed a 
variety of methods of solving equations. Numerical 
methods for locating roots of equations can often be 
easily programmed. Using the capabilities of modern 
computers, one can explore in detail these age-old recipes 
(capabilities, restrictions, speed of convergence). 

The methods included in this chapter are, Demidovici 
(1973), Ebâncă (2005): 

1. Bairstow method for the calculus of the roots (real or 
complex) of an algebraic equation; 

2. Bernoulli root finding method. 

The user has the possibility to impose the precision of the 
estimations of the roots. 

The Bernoulli root finding algorithm is newly inducted in 
Numerical Engineering Software. 

2.4 Numerical Integration 

The need to approximate the definite integral of a 
function often arises in the case when the function has no 
antiderivative or the antiderivative is difficult to 
manipulate numerically, and also in the case of a function 
known only for her values in a discrete set of data points, 
whose antiderivative is no longer possible to determine.  

From the control engineering point of view simple 
integrals can define optimization or robust control criteria 
which have to be minimized or maximized depending on 
the type of problem: 

The methods included in this chapter are: 

1. Newton integration method for the numerical 
evaluation of a simple integral; 

2.  a method for the numerical evaluation of a  double 
integral over a measurable convex domain with polygonal 
boundary. 

The development of this chapter has been finalized by 
improving the method for evaluating double integrals 
over measurable convex domains with polygonal 
boundary. The method now contains a procedure which 
allows imposing the accuracy of the calculus and now the 
method enjoys proficient results. 



 
 

     

 

2.5 Differential Equations 

Differential equations play a major role in scientific 
calculations and mathematical representations. 

In system theory, linear differential equations with 
constant parameters are used to describe linear time 
invariant SISO (Single Input-Single Output) systems. 
Systems of ordinary differential equations can describe 
linear time invariant MIMO (Multi Input-Multi Output) 
systems, Marin (2006). Partially differential equations are 
used to describe distributed parameters systems. 

Differences equations are used to describe discrete 
systems. 

In control engineering, system engineers deal mostly with 
non-linear phenomena. However, in some conditions a 
non-linear mathematical model can be very good 
approximated through a linear model, Marin (2007). 

Ordinary or partially differential equations represent 
mathematical models for the majority of mechanical and 
electrotechnics engineering problems: the study of efforts 
to which resistance elements are exposed: bars, pillars, 
thin plates, thick plates, pipes; the study of electrical 
fields in dielectrics problems, magnetic and thermal 
fields, the propagation of all types of waves and the list 
goes on. 

Once the physical phenomenon and the differential 
equations that govern it, boundary conditions and 
coefficients are stated, only one issue remains: the solving 
of this mathematical model. For various reasons: physical 
differences, boundaries with an unusual geometry etc., the 
solving of this mathematical model will consist of the 
search for an approximate solution using numerical 
computation. 

The methods included in this chapter are, Militaru (2008), 
Popa (2010), Press (2007): 

1. Euler method for the solving of a Cauchy I-st order 
problem; 

2. Runge-Kutta 4-th order method for solving Cauchy I-st 
order problems; 

3.  a Runge-Kutta 4-th order based method for the solving 
of superior order differential equations; 

4.  a Runge-Kutta 4-th order based method for the solving 
of systems of differential equations; 

5.  a finite difference method for solving a Sturm-
Liouville problem. 

Since the previous number of this journal, methods 3 to 5 
have been implemented successfully. Because of the 
implementation of the method for dealing with Sturm-
Liouville problems the original name of the chapter of 
Cauchy Problems has been extended to that of 
Differential Equations.  

This chapter has been, by far, the most challenging part of 
the development of Numerical Engineering Software. We 
developed specialized numerical functions based on 
methods like the Runge-Kutta 4-th order, for the 
evaluation of high order differential equations and 
systems of differential equations.  

In the case of Sturm-Liouville problems the implemented 
method is based on finite differences and is appropriate 
for every type of boundary conditions (Neumann, 
Dirichlet or mixed).  

The way of inducting data is very simple and natural, 
constituting an advantage of Numerical Engineering 
Software.  

3. THE INTERFACE OF NUMERICAL 
ENGINEERING SOFTWARE 

As we described in the previous number of this journal, 
Militaru (2009b), the interface of Numerical Engineering 
Software consists of dedicated application windows. Each 
application window is composed of drop-down menus 
and option buttons. Drop down menus are generally 
placed in an application window to select the method of 
calculation. The rest of the options are present because 
they represent parameters or restrictions of a given 
method.   

Each particular application window emerged from a need 
to bring the options closer to the user.  

For ease of understanding and for better display of the 
benefits of Numerical Engineering Software we will focus 
mainly on the application window present in the 
Romanian version of the software. 

 
Fig. 1. Calculating the inverse of a matrix using NES 



 
 

     

 

 
Fig. 2. Militaru method for the estimation of the extreme 
eigenvalues of a real symmetric matrix 

 

 
Fig. 3. Solving a linear algebraic system through LR 
factorization 

 
Fig. 4 . Calculating a matrix determinant in Numerical 
Engineering Software using the .nes files 

 
Fig. 5. Lagrange interpolation procedure for a function 
together with the graphic profile visualization. 

 

 
Fig 6. Evaluating a simple definite integral using NES 

 
Fig. 7 Numerical solving of a  high order initial value 
problem using NES 



 
 

     

 

 
Fig. 8. Numerical Solving of a system of ordinary 
differential equations 

4.  OPTIMIZATION IN NUMERICAL ENGINEERING 
SOFTWARE 

Optimization in the version of Numerical Engineering 
Software presented in the previous number of this journal 
resumed to the following aspects, Militaru (2009b): 

1. Initial value problems for high order differential 
equations are solved numerically through a compact 
procedure based on a Runge-Kutta IV-th order method, 
depending only on the order of the equation and the 
integration step length imposed by the user.  

2. Runge-Kutta method (IV-th order) allow the display of 
the approximate values of the exact solution belonging to 
an initial value problem for ordinary differential equations 
with an integration step length selected by the user. The 
algorithm has been improved in order to approximate the 
values of the exact solution of the given Cauchy problem, 
within a given accuracy, imposed by the user. The 
computational cost of algorithm is minimal. 

3. Danilevsky method determines the coefficients of the 
characteristic polynomial, the eigenvalues and the 
corresponding eigenvectors for any real square matrix. All 
the particular cases are taking into consideration, the 
algorithm having a minimal cost of computation.  

4. LR factorization method allows the estimation of the 
eigenvalues of a real square matrix. The algorithm gives 
the possibility of working with a given precision. It is 
complete with all particular cases and has a minimal cost 
of computation.  

5. Militaru method, Militaru (2008), allows the numerical 
approximation of the extreme eigenvalues of a real 
symmetric matrix with a given precision, by a trace 
computation. The algorithm avoids the determination of 
the coefficients of the characteristic polynomial of the 

given matrix, or the use of similarity transformations, 
with the purpose of eliminating the intermediate stages of 
calculation which lead to numerical instabilities, 
contributing in the decrease of the amount of work. Thus, 
the algorithm benefits from an optimum cost of 
computation.  

6. Lagrange polynomial interpolation allows the 
approximation of a function f given only for a discrete 
set of points which make up a sample. The algorithm 
evaluates the value of the function in a given data point z, 
based on a Lagrange interpolating polynomial, having 
incorporated a procedure which offers to user the 
possibility to impose the degree of the interpolating 
polynomial, Militaru (2003).  Thus, the algorithm exploits 
better the results of calculus, contributing to a decrease in 
the amount of work involved, respectively the 
computational cost necessary to approximate )(zf  
within a given accuracy. One can also visualize the 
approximate profile of the function with an option for 
scaling the graph and several other appearance options.  

The same characteristics are also valid for the case of 
Newton polynomial interpolation. 

Further aspects of optimization include: 

- Design of a compact procedure for the calculus of 
systems of differential equations, RK4 based.  

- Design of a compact procedure for solving of Sturm-
Liouville problems. 

- Lagrange and Newton interpolating polynomials now 
require precision of calculation instead of the degree of 
the approximating polynomial.  

- Double integral evaluation includes now precision 
requirement. 

- Several modifications in matters of interface.  

5. NUMERICAL EXAMPLES 

5.1 Electrical Engineering 

The currents )(1 ti  and )(2 ti  in the left and right loops of 
a closed circuit containing a resistance, a capacitance, an 
inductance and a voltage source, verify the following 2-nd 
order initial value problem: 
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Assuming that the switch in the circuit is closed at time 
t=0, we are looking to estimate the values of the currents 

)(1 ti , )(2 ti  at the moments 9,1  ,1.0 =⋅= iiti . 

Using NES we obtain the following approximations: 



 
 

     

 

Table 1. Numerical evaluations and errors for the system 
of differential equations 

t  )(1 ti  )(2 ti  error1 error2  

0.1 0.5482 0.3261 0.005 0.002 

0.2 0.9847 0.5793 0.007 0.003 

0.3 1.3305 0.7735 0.008 0.004 

0.4 1.6027 0.9201 0.008 0.005 

0.5 1.8152 1.0283 0.009 0.005 

0.6 1.9795 1.1056 0.009 0.005 

0.7 2.1048 1.1582 0.007 0.004 

0.8 2.1985 1.1910 0.006 0.004 

0.9 2.1985 1.1910 0.006 0.004 

(error1 and error2 represents the absolute value of 
differences between the exact values of the currents snd 
theirs numerical approximations). 

5.2 General Engineering 

1. We consider the steady state heat transfer process in a 
long, thin bar, and we assume that the cross-sections of 
the bar are uniform, and that the temperature varies only 
in the longitudinal direction. We also assume that the bar 
is perfectly insulated, except at the ends. Supposing the 
cross-section area 2210 mA −=  and the 
length mL 5.0= , we intend to calculate the steady-state 
temperature of the bar.  The left end is fixed at 

C0300 and the right end at C0700 . We are looking to 
evaluate the temperature distribution along the rod, 
supposing a constant thermal conductivity k .  

The steady-state temperature )(xTT =  verifies the 
following boundary value problem: 
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Observation: The exact solution is given by 
300800)( += xxT . 

Using NES and imposing a discretization of the interval 
],0[ L  into 10 equal subintervals one obtains: 

Table 2. Numerical results for the above Sturm-Liouville 
problem 

ix  iT  

0.05 340 

0.1 380 

0.15 420 

0.2 460 

0.25 500 

0.3 540 

0.35 580 

0.4 620 

0.45 660 

( iT denotes the approximate value of the temperature in 

the point of  abscise ix ).  

One observes that the numerical results are in very good 
agreement with the exact ones. 

2. Let the following boundary value problem: 
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We are looking to approximate the values of the exact 
solution )(xy  of the above problem in the points 

*N ,/1 ,,0  , ∈==⋅= nnhnihixi  

We consider 20=n . Using NES we obtain 

Table 3. Boundary value problem results and errors for 
the given Sturm-Liouville problem 

ix  iy  error  

0.05 0.0211 0.0003 

0.1 0.0393 0.0003 

0.15 0.0549 0.0003 

0.2 0.0678 0.0003 

0.25 0.0781 0.0003 

0.3 0.0858 0.0003 

0.35 0.0910 0.0002 

0.4 0.0940 0.0003 

0.45 0.0946 0.0002 

0.5 0.0932 0.0002 

0.55 0.0899 0.0002 

0.6 0.0849 0.0002 



 
 

     

 

0.65 0.0783 0.0002 

0.7 0.0702 0.0001 

0.75 0.0609 0.0001 

0.8 0.0505 0.0001 

0.85 0.0391 0.0001 

0.9 0.0268 0.0001 

0.95 0.0137 0.0001 

 Observations:   

(i). error  represents the absolute value of difference 
between the exact value of )(xy  and the numerical 
approximation;  

(ii). The exact solution is given by 

)1ln(5.0)(4413.0)( 2xxarctgxy +−=  

5.3 General Engineering 

We intend to evaluate the following double integral 

∫∫ +=
D

dxdyyxI arcsin , where the domain D  is 

the parallelogram given by the vertices )1;1(−M , 
)1;1( −N , )1;2( −P , )1;0(Q . 

Using NES one obtains: imposing an accuracy of 
310−=ε  ,  570774.1=I ; imposing an accuracy of 
410−=ε  , 570797.1=I . 

Note: The exact value is 5707963.1=I  
 

6. CONCLUSIONS 

Numerical Engineering Software has a steady growth 
rhythm and approaches a various range of numerical 
methods with value to real-life technical problems.  

We emphasis that one of the crucial advantages of 
Numerical Engineering Software is the easy to use 
interface which facilitates the production of accurate 
results over a minimum time span. This means that a user 
has to be familiar only with the restrictions and input data 
characteristic to every method.   

Precision of results is another advantage of NES, most 
methods being equipped with the possibility of imposing 
accuracy of the results to be obtained.  

Strong components of the software project are the highly 
informative error messages which automatically point out 
the appropriate course of action.  

Future development areas include non-linear equations 
and systems of equations and considerable improvements 
to the overall general appearance with emphasis on 
increasing the quality of graphical representations. 
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