

Evolution of Prolog Compilers for Multiprocessor Systems and GRIDs

Ecaterina–Irina Grosu*, Dan Mancas**, Nicolae–Iulian Enescu***, Ileana Hamburg****,

*CS AEIC SA, Craiova, Romania,
(e-mail: catya_ace@yahoo.com)

**Faculty of Automation, Computers and Electronics, University of Craiova,
Craiova, Romania, (e-mail: dmancas@ucv.ro)

*** Faculty of Automation, Computers and Electronics, University of Craiova,
Craiova, Romania, (e-mail nenescu@cs.ucv.ro)

****Institut Arbeit und Technik, Gelsenkirchen, Germany
(e-mail hamburg@iat.eu)

Abstract: Starting with the first interpreter written in 1972 and then the de facto standard model
for Prolog, the story of this logic language is continuing even today, integrating itself in the new
techniques. As nowadays the complexity of software systems is increasing and the attention is on
extensions and tailoring for more flexibility, the implementation in such a language is a proposal
that may reach efficiency faster than object-oriented languages. In this idea, different open source
projects regarding compiling and interpreting of this language were launched and their
development will be presented in the paper.

Keywords: architecture, software, efficiency, performance, programming, compiler, language.

1. INTRODUCTION

In the Introduction chapter, a presentation of the two main
ideas, Prolog and GRID, will be made.

1.1 Prolog

Prolog is a general purpose logic programming language
that associates with artificial intelligence and
computational linguistics. The name is the short for
PROgramming LOGic.

Prolog has its main ground in formal logic, and it is a
declarative programming language, that is its syntax uses
facts and rules expressed by terms of relations to create
the logic. When a result is needed, a query is made in
order for the logic to perform the computation over the
relations to offer the result.

The language was first conceived by a group around
Alain Colmerauer in Marseille, France, in the early 1970s
and the first Prolog system was developed in 1972 by
Alain Colmerauer and Phillipe Roussel.

 Prolog was one of the first logic programming languages,
and remains among the most popular such languages
today, with many free and commercial implementations
available. If initially it aimed at natural language
processing, the language has since then developed into
other areas like theorem proving, expert systems, games,
automated answering systems, ontologies and

sophisticated control systems. Modern Prolog
environments support the creation of graphical user
interfaces, as well as administrative and networked
applications, as Kowalski, R. A..sais in “The early years
of logic programming“.

As a simple example we have the family tree:

The rules would then be:
 male(john1).
 male(huston1).
 male(huston2).
 male(john2).
 male(michael1).

 female(catherine).

 female(elizabeth).
 female(sophia).

 parent(huston1, john1).
 parent(elizabeth, john1).
 parent(huston2, huston1).
 parent(catherine, huston1).
 parent(john2, huston1).
 parent(sophia, elizabeth).
 parent(michael1, sophia).

1.2 GRID

The term grid computing originated in the early 1990s as
a metaphor for making computer power as easy to access
as an electric power grid in Ian Foster's and Carl
Kesselman's seminal work, "The Grid: Blueprint for a
new computing infrastructure" (1999).

The first definition was given by them as in “A
computational grid is a hardware and software
infrastructure that provides dependable, consistent,
pervasive, and inexpensive access to high-end
computational capabilities.”

In the same book Ian Foster appraised that Grids have
moved from the obscurely academic to the highly
popular. The information we can read about is vast and
gathers field like Compute Grids, Data Grids, Science
Grids, Access Grids, Knowledge Grids, Bio Grids, Sensor
Grids, Cluster Grids, Campus Grids, Tera Grids, and
Commodity Grids.

Another idea that appeared in the skeptic minds is if there
is more to the Grid than, as one wag put it, a “funding
concept” and, as industry becomes involved, a marketing
slogan, Ian Foster said.

In a later publication, Ian Foster opens a checklist in order
to better define the term Grid:

1) coordinates resources that are not subject to
centralized control …

2) … using standard, open, general-purpose protocols
and interfaces

3) … to deliver nontrivial qualities of service.

1.3 Our context

The Rogrid Consortium was set up in May 2002, at the
initiative of the Ministry for Communication and
Information Technology and the Ministry of Education
and Research.

It has as main objectives:

• To increase awareness about Romanian Grid
activities and benefits among potential users

• To encourage and facilitate the involvement of other
interested and competent institutions nation wide

• To support the development of the Romanian Grid
integrated project as a consistent and coherent part of the
European R&D activity in this field.

The RoGRID Consortium represents as the National Grid
initiative in the SEE-GRID eInfrastructure for regional
eScience (SEE-GRID-SCI) is a European Commission
co-founded project.

Fig. 2. GRID distribution in Europe

SEE-GRID intends to provide specific support actions to
pave the way towards the participation of the SE
European countries to the Pan-European and worldwide
Grid initiatives.

SEE-GRID-SCI spans across 14 countries and operates 35
sites, from a mixture of research centres, Universities,
companies and other interested bodies. The infrastructure
runs on a wide range of different hardware, at present
almost all computers in the SEE-GRID-SCI infrastructure
run the CERN (The European Organization for Nuclear
Research (French: Organisation Européenne pour la
Recherche Nucléaire)) version of Scientific Linux.

In this context, it will be available for us a GRID center
where we can test certain Prolog engines and further on
implement our own that will work on multiprocessor
systems.

2. ENGINES FOR PROLOG

In order to integrate the use of the Prolog language in the
nowadays technologies, the development of compilers
and interpreters that use GRID as a hardware platform has
begun.

The nowadays implementation relate to the old single –
processor compilers.

A parallel presentation of the objectives and requirements
over these two types of compilers will be made, starting
with some single-processor compilers presentation, and
ending with one of the few usable multiprocessor
compilers for Prolog.

2.1 tuProlog

tuProlog (also known as 2P) is an Open Source Prolog
engine, as it is shown in the project’s home page.

The project was built on top of the Java Virtual Machine.
The design was created to provide logic-based technology
as a core ingredient for Internet application components
and infrastructures.

As in this context, logic programming languages have
already proved to be effective both as communication and
as coordination tools. Also, in facing specific issues like
security in a declarative way the logic programming
languages reach effectiveness.

As Internet application have a certain type of
requirements, the purpose of playing a key role in the
development and deployment of this type of applications
and infrastructures, logic-based components were
implemented.

The engineering requirements that had to be followed
were respected accordingly so that tuProlog has been
designed with scalability and interoperability in mind, and
to be easily deployable, light-weight, statically and
dynamically configurable.

As in the project presentation, the key properties that
tuProlog has been created to feature are:

Minimality: containing only the most essential
characteristics of a Prolog engine, its pure inferential core
is available as a Java object. Therefore, tuProlog is as thin
and light-weight as possible. After this, the user needs are
reflected in configurations that allow the required Prolog
features (e.g. I/O predicates, DCG operators) to be added
to or removed from a tuProlog engine. This property is
particularly relevant for use in small devices such as
PDAs or mobile phones.

Configurability: choosing minimality as a first feature for
the tuProlog project a high degree of configurability is its
necessary counterpart. Moreover, the provided feature,
configurability, was made as to be dynamic, in order to
face the continuous changes especially in the Internet
environment, so that uniformly, static and dynamic
component were developed and enabled. As the
granularity is made at the library level, one can load and
unload features such as recognition of various syntax
elements, predicates, functors and operators in the core
engine, as said earlier, in a static and/or dynamic fashion.
Until now but also further on, developing libraries was
made using either Prolog, or Java, or both languages, and
can be either employed to configure a tuProlog engine
when it is started up, or loaded (and then unloaded)
dynamically at any time during the engine execution. At
the moment, five libraries are included in the standard
tuProlog distribution, that provide functionalities that
correspond to the ISO Prolog Standard predicates; new
libraries can be defined by the tuProlog user or developer
as well, as using tuProlog would mean knowing at least

Prolog, so that one can implement such a library in Prolog
or Java.

Deployability: being developed in Java made tuProlog
easy to deploy but also portable. All one needs to start is
the standard Java Virtual Machine, and a Java invocation
upon a single JAR file that will load the context and
finally launch the project.

Interoperability: Interoperability is one of the features
composed by other two already stated and achieved, and
was from the beginning an important objective. So
interoperability is achieved by respecting Internet
standard patterns and by coordinating models. Another
part of interoperability is the interaction with different
media, as the Internet is a dynamic environment. For this,
TCP/IP and RMI are supported, but also, tuProlog engine
can also be provided as a CORBA service. But as
interaction is a complex matter and using this approached
may narrow the possibilities for coupling with the benefit
of preventing more complex form of coordination other
than peer-to-peer models to be enacted, in order not to
disturb the users’ needs and activity, tuProlog provides
the possibility to adopt a logic-based abstraction as a
unifying interaction metaphor:

• components of a tuProlog application can be
organized around Java-based tuple spaces, logic tuple
spaces, and ReSpecT tuple centres;

• then, tuProlog applications can exploit Internet
infrastructures providing tuple-based coordination
services, such as TuCSoN or LuCe.

Between the declarative/logic and the imperative/object-
oriented programming paradigms to be found in the
Prolog and Java worlds, the tuProlog creates a bound, an
integration scheme that is found to be the most appealing
to applications and systems developers as it is a full,
bidirectional, easy-to-use integration scheme.

During the later development for the recent release,
tuProlog's internal architecture has been restructured, to
allow for more ease of both extension and modification.
Also, sound engineering principles, such as object-
oriented code structuring, reuse of established community
knowledge under the form of patterns, loose coupling of
composing elements, modularity, and a clear and clean
separation of concerns were taken into account, as the
tuProlog's architecture has been based upon a set of
managers, operating around a minimal core shaped as a
Finite State Machine, and handling control of sensible
parts of the engine, such as built-in primitives, predicate
libraries, and logic theories.

The result is giving rise to deeper flexibility and
modification ability|, two properties that, to a certain
extent, have always represented a strong asset on
tuProlog's appealing side.

As a consideration, especially during the latest years,
tuProlog has been involved as a basic component in a

number of research projects who did benefit from its
pliable nature.

For instance, tuProlog has been integrated into the
DCaseLP environment for building heterogeneous multi-
agent systems, thanks to the core extendibility provided
by dynamically loadable predicate libraries; the engine's
unification algorithm, distributed across the classes
representing the Prolog terms hierarchy, in true object-
oriented fashion, has been modified to support the
PRACTIONIST framework for developing agents
according to the Belief-Desire-Intention (BDI) model; the
whole tuProlog has been tweaked to implement the AtuP
argumentation engine as a non-monotonic reasoning
component in Internet or agent-based applications.

Fig. 2. aliCE research group, Alma Mater Studiorum

tuProlog is developed and maintained by the aliCE
research group at the Alma Mater Studiorum{Universita
di Bologna, site of Cesena)

2.3 GNU Prolog

GNU Prolog is a free Prolog compiler with constraint
solving over finite domains developed by Daniel Diaz.

GNU Prolog uses Prolog and constraint programs and
produces native binaries (like gcc does from a C source).
A main feature of GNU Prolog is that the obtained
executable is then stand-alone. The size of this executable
can be quite small since GNU Prolog can avoid linking
the code of most unused built-in predicates.

The Prolog part of the GNU Prolog project assures two
objectives:

• conforms to the ISO standard for Prolog

• offers many extensions very useful in practice
(global variables, OS interface, sockets,...).

GNU Prolog also includes an efficient constraint solver
over Finite Domains (FD). In this way, the user
passionate about constrain logic programming can work
combining the power of constraint programming to the
declarativity of logic programming.

Its features are:

Prolog system:

• conforms to the ISO standard for Prolog (floating
point numbers, streams, dynamic code,...).

• a lot of extensions: global variables, definite clause
grammars (DCG), sockets interface, operating system
interface,...

• more than 300 Prolog built-in predicates.

• Prolog debugger and a low-level WAM debugger.

• line editing facility under the interactive interpreter
with completion on atoms.

• powerful bidirectional interface between Prolog and
C.

Compiler:

• native-code compiler producing stand alone
executables.

• simple command-line compiler accepting a wide
variety of files: Prolog files, C files, WAM files,...

• direct generation of assembly code 15 times faster
than wamcc + gcc.

• most of unused built-in predicates are not linked (to
reduce the size of the executables).

• compiled predicates (native-code) as fast as wamcc
on average.

• consulted predicates (byte-code) 5 times faster than
wamcc.

Fig. 3. Compilation: Compilation scheme

Constraint solver:

• FD variables well integrated into the Prolog
environment (full compatibility with Prolog variables and
integers). No need for explicit FD declarations.

• very efficient FD solver (comparable to commercial
solvers).

• high-level constraints can be described in terms of
simple primitives.

• a lot of predefined constraints: arithmetic
constraints, boolean constraints, symbolic constraints,
reified constraints, ...

• several predefined enumeration heuristics.

• the user can define his own new constraints.

• more than 50 FD built-in constraints/predicates.

The GNU Prolog compiler is based on the Warren
Abstract Machine (WAM). In order to reach at the native
stand alone executable, the Prolog program takes the
WAM file and translates it to a low-level machine
independent language called mini-assembly specifically
designed for GNU Prolog. This mini-assembled file is
then transformed in an object file by being translated to
the assembly language of the target machine. This allows
GNU Prolog to produce a native stand alone executable
from a Prolog source (similarly to what does a C compiler
from a C program). As the code of most unused built-in
predicates can be excluded from the executables at link-
time the GNU Prolog program can reach its main
advantage of this compilation scheme, which is to
produce native code and to be fast resulting in a small
executable file.

2.3 LOGFLOW

The progress of this kind of compilers comes with the
advancements in multiprocessor systems. As to fit the
new technologies, compilers designed especially for these
systems are being developed.

One project that reached into our attention is the
LOGFLOW system.

According to its official description, LOGFLOW is a
distributed Prolog system running on multi-transputer
machines and workstation clusters. The 3DPAM engines
(Distributed Data Driven Prolog Abstract Machines)
execute the predicates of a Prolog program in parallel
based on a fine-grain data driven execution scheme.
Coarse- grain pieces of work are executed by traditional
sequential WAM (Warren Abstract) machines, as it
presented in “MOGUL: A Graphical Environment for
Developing the LOGFLOW Parallel Prolog System”
paper.

The main design issues in the development of
LOGFLOW were as follow:

• correctness of the dataflow execution mechanism

• combining 3DPAM and WAM engines

• compiling Prolog programs into abstract codes both
for the 3DPAM and WAM engines

• mapping of 3DPAM and WAM engines into the
distributed processor space

• load balancing

• granularity control

• performance measurements

Fig. 4. LOGFLOW: structure of a processing element

In order to obtain all the design issues for the system,
different implementations are made.

MOGUL is one of the implementations presented also in
MOGUL: A Graphical Environment for Developing the
LOGFLOW Parallel Prolog System” paper and is defined
to be a framework for creating Prolog programs and
makes LOGFLOW available for users other than the
developers.

Basically, MOGUL is a framework for visualizing the
relevant features of the parallel system design and has as
main advantage of releasing the programmer in dealing
with the collection of necessary information during
development, so that the user can concentrate on the
relevant Prolog related development issues.

In order to support the system designers or the Prolog
application programmers, MOGUL offers visualization
techniques and evaluation methods of the results.

MOGUL is based on the concept of projects. A project
consists of the following steps:

1. Editing the Prolog program
2. Compiling the Prolog program
3. Executing the Prolog program
4. Visualizing the execution of the Prolog program

a. Animating the dataflow execution

b. Animating the decisions of the load balancer and
granularity controller

We shall analyse the compiling part, as it is our point of
discussion.

As defined, the main goal of the compiler window is to
control and access the compiler program that can be
located on any other machine in the network.

Without the use of MOGUL one should:
• copy the source files to a remote machine,
• login that machine,
• execute both compilers to create 3DPAM and WAM

abstract code (with several additional files)
• execute the program which makes the connection

between the two abstract codes (so the 3DPAM engine
can do a sequential query for the WAM engine and can
convert all the necessary data for this action)

• copy the result files back

Fig. 5. Compiler: The compiler OPTIONS window

In the OPTIONS menu the user is allowed to make the
following settings, see Figure 5:

• Address of remote machine (Host), where the
compilers are placed

• Username for login the remote machine (User)
• Temporary directory in which the files are to be

copied (Remote Directory)

• Target system for which the Prolog program is to be
compiled (Transputer, Workstation, Both)

The target system should be selected before the
compilation and not before the execution.

LOGFLOW implementations on different architectures
use different WAM engines and therefore, different
WAM compilers are invoked.

6. CONCLUSIONS

In an emerging technological development for
applications on multiprocessor systems, the introduction
of the logical programming language could lead to a very
fast advancement and increase of performance.

The effect of user notation leads to this conclusion.

Fig. 6. User notations: Performance using multiprocessors

We sign on to follow this results and the development of
these applications, following we will implement our own
Prolog compiler to match or, why not, overcome the
results of others cited in this paper.

REFERENCES

Diaz, D., (1996). GNU Prolog, Internet,
http://www.gprolog.org/.

Foster, I. and Kesselman, C., (2002). What is the GRID?
A three point checklist, GRIDToday, July 20, 2002

Piancastelli, G. and Omicini, A. (2007). tuProlog 2.0: One
step beyond ALP Newsletter Digest 20(1).

Kacsuk, P. (2007), Granularity Control In The Logflow
Parallel Prolog System.

Kacsuk, P., Kovács, J. And Podhorszki, N. (1997)
MOGUL: A Graphical Environment for Developing
the LOGFLOW Parallel Prolog System, ILPS'97
www.wikipedia.org

