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Abstract: A model is presented for the impact of a robotic kinematic element in planar motion. 
The model consists of a system of nonlinear differential equations which considers the collisions 
as well as frictional effects at the contacting end, and allows one to predict the rigid and elastic 
body motion after the impact. The mode functions are selected such that the method can be made 
computationally as simple as possible, without compromising accuracy. To describe the impact 
between the kinematic link and the rigid surface the classical Hertzian contact theory and elasto-
plastic indentation theory are used. 
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1. INTRODUCTION 

The propagation of impact-induced elastic waves has 
been the subject of many investigations. The latest 
development in the area has been the effect of elastic 
vibrations on the post-impact velocities of slender bars in 
motion. Gau and Shabana (1991; 1992), and Shabana and 
Gau (1993) examined the effect of the topological change 
in the propagation of longitudinal elastic waves in 
mechanical systems. The application of the analysis 
presented is demonstrated using a rotating rod that is 
subject to an axial impact by a rigid mass moving with a 
constant velocity. On the experimental front, Yigit et al. 
(1990a) veriffed the validity of using the algebraic 
generalized impulse momentum equations of a radially 
rotating beam, transversally impacting an external 
surface. Their conclusion was that the momentum balance 
method and an empirical coeffcient of restitution can be 
used with confidence in the impact of radially rotating 
beam. A spring-dashpot model for the dynamics of a 
radially rotating beam with impact is studied by the same 
authors (Yigit et al. 1990b). The impact that appeared to 
be single to the naked eye consists in reality of several 
collisions in rapid sequence. Existence of multiple 
collisions was recognized by Mason (1935), Goldsmith 
(1960), and experimentally by Yigit et al. (1990a; 1990b). 
Wang et al. (1995) studied the response of a right-angled 
bent cantilever beam subjected to an out-of-plane 
impulsive load applied to concentrated mass at its tip. A 
double-hinge mechanism is developed with a pure 
bending hinge in the first segment of the beam and a 
combined bending-torsion hinge in the second segment. 
 
Stoianovici and Hurmuzlu (1996) used a discrete model 
for the dynamics of a exible bar during the collision 
process. They sectioned the bar in equal rigid segments, 
connected to one another by linear springs of uniform 

stiffness, and placed symmetrically at a specific 
transverse distance from the neutral axis. The stiffness 
constant was evaluated by using the axial displacement at 
the center of a vertically hanged bar caused by its weight. 
The transverse distance was determined by an 
equivalence with the rotation of a transversal section, at 
the center, of a horizontal cantilever bar acted upon by its 
weight. They consider Lagrange equations for the 
holonomic case with uniform slip during collision. 
 
Marghitu and Hurmuzlu (1996) introduce a finite number 
of vibration modes to take into account the vibrational 
effect for the impact of a single straight beam. Effects 
such as multicollisions, slip reversal, local vortex vector, 
and different configurations are accommodated 
automatically.  
 

The objective of the present article is to develop a 
procedure that can be followed to solve the collision with 
friction of robotic kinematic links using an analytical 
continuous model. The kinetic energy required has been 
derived using a generalized velocity field theory for 
elastic solids in rotation and translation. Using this 
continuous model, we can study the vibrations, the 
multiple collisions, and the rebound velocities. 
 

2. KINEMATIC RELATIONS 
 

The system to be analyzed, shown in Figure 1, consists of 
a planar flexible link with the length L. Consider the 
collision between the link of mass m and a fixed massive 
block that is bounded by a horizontal plane. When the 
link is undeformed, its coordinate system is denoted as [i; 
j; k]. The motion of the link in a Newtonian reference 
frame [i0; j0; k] is prescribed as a function of time. The 
link fixed reference system rotates and translates with the 



 
 

     

 

kinematic element as if the link was rigid. The problem is 
to calculate the general motion of the link (rigid body 
motion and exible deformations). Let x be the distance 
from O (the origin of [i; j; k]) to a generic cross section 
of M0, when M0 is undeformed. The incident angle of the 
bar at the impact moment is q1 the angle between the unit 
vectors i and i0. Inspection of Figure 1 shows that the 
planar position vector of an arbitrary point on the 
deformable beam can be written as 
 
       R = rO + r + d                  (1) 
 
where, rO is the global position vector of the origin O, and 
r = x1. For a link articulated at O the position vector rO = 
0 and the origins of the two reference frames are identical. 
The total elastic motion of the generic point can be 
expressed as 
 
                    d(x; n; t) = si + yj                           (2) 
 
where s(x; n; t) denotes the stretch in the link along the 
elastic axis  
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where q1+i(t) are the generalized elastic coordinates, and 

Nn∈  is the total number of vibrational modes (N is the 
set of natural numbers). 
 
The transverse elastic displacement is 
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Here the unrestricted spatial functions ( )xijΦ , j=1,2 can 
be chosen as the mode shapes of a articulated-free beam. 

The relation between the axial and transverse 
displacements is given by 
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where sx +=η . 
 
The motion of the elastic link is characterized by the 

generalized reference speed 
•

= 11 qu  and the generalized 
elastic speeds defined as 

            

      
•

++ = i1i1 qu , i=1,2…n                 (6) 
 
Now, we introduce the generalized position and speed 
(reference and elastic) vectors as 
 
  q = [q1, q2,...... qn+1]T , 
  u = [u1, u2,....... un+1]T . 
 
The impact event is initiated when the link contacts the 
massive surface at the contact point E. The generalized 
speeds ui, i = 1,2,…. n+1 at the instant t0 at which the 
linkk comes into contact with the surface are presumed to 
be known. We seek to determine the values  ui at the time 
tf, the instant at which the ink completely loses contact 
with the surface (end of collision). The kinetic energy of 
the kinematic element is given by 
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where L
m=ρ  is the constant mass per unit of length, 

and m is the mass of the bar. 
 

3. IMPACT FORCES 
 
The equations of impulsive motion are determined by 
combining the classical Hertzian contact theory 
(Goldsmith 1960) and elastic-plastic indentation theory 
(Johnson 1985). There is a linear relationship between the 
plastic deformation qp and contact force Fy,  as follows 
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In the above equation the coeffcient η  has the following 
expression 
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Fig. 1. A planar flexible link with the length 



 
 

     

 

Fig. 2. Representation of the force Fy with respect to the 
deformation q 

where H characterizes the plastic property of the material 
and can be pproximate with the Brinell hardness, and R is 
the radius of the impacting body. The critical value of the 
impact force Fc, can be expressed in terms of the yield 
stress yσ  
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The Poisson's ratio is ν . The elastic deformation qe as a 
function of the contact force is described by the Hertz's 
law 
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and the total normal deformation for the elasto-plastic 
impact is the sum of elastic and plastic deformation 
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Figure 2 shows the representation of the force Fy with 
respect to the deformation q. The critical deformation qc 
corresponds to the force Fc, and the maximum 
deformation qm appears when the maximum force Fm is 
applied.  

The impact force at the impact point is 
 
                               F=Fxi0+Fyj0                          (14) 
 
where Fx is the friction force. 
 
Contact force was determined and examined. When the 
contact force becomes positive this represents the 

separation of the body. In this way we can capture the 
multiple impacts. When the bar has a nonzero tangential 
velocity at the onset of the collision 0t

E ≠ν , there will 
be a phase of slip. 
 
Using Lagrange's method, the nonlinear impact equations 
of motion are of the form 
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where q is the generalized coordinates vector, M is the 
mass matrix, and f is a nonlinear vector, which contains 
the generalized vector and its derivative. 
 
 

4 SIMULATION RESULTS 
 

The objective of the work is to investigate the validity of 
the analytical frictional impact model presented and its 
applicability for rigid and elastic robotics links. Figure 3 
represents the variation of the impact angle q1 during 
impact.  

 
The initial impact angle is π /3, the initial angular 
velocity is 0ω  = 10 rad/s, and the coefficient of friction is 
μ  = 0.3.  
 
Figure 4 shows the elastic normal displacement of the 
impact point and Figure 5 depicts the impact force during 
the contact. 
 
The coefficient of restitution was deffined as a kinematic 
constant that determines the ratio of the normal rebound 
velocity to the nornal approach velocity at the contact 
point. The accuracy of impact theory to model collisions 
depends obviously on the accuracy and behavior of this 
coefficient. The coefficient of restitution was believed to 
be a material properties and its more important role is in 
the representation of the elasto-plastic conduct due to 
deformation at the contact region. This coefficient 
depends not only on the normal velocity component, but 

Fig. 3. The variation of the impact angle q1 during
impact 



 
 

     

 

also the tangential component as well (or alternatively, on 
the angle of incidence).  
 

Figures 6 and 7 show how simulation values for e, for 
low-speed collisions, vary with the coefficient of friction, 
μ  and the initial impact velocity 0ω . 
 

5 CONCLUSIONS 
 
We introduce a finite number of vibration modes to take 
into account the vibrational effect on the beam for 
different configurations. The impulse during impact is 
dependent on the coefficient of friction and the the initial 
impact velocity. 
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Fig. 4. The elastic normal displacement of the impact 
point 

Fig. 5. The impact force during the contact 

Fig. 6. The variation of e, for low-speed collisions,  with 
the coefficient of friction μ  

Fig. 7. The variation of e, for low-speed collisions,  with 
the initial impact velocity 0ω . 


