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Abstract: The paper presents the Bond Graph modelling and the feedback linearizing technique 
applied to an inverted pendulum system. First, the Bond Graph model of the inverted pendulum 
system is achieved. Next, by using the feedback linearizing technique, a nonlinear control law is 
obtained. This nonlinear control method provides an alternative solution to existing classical linear 
methods. For the implementation of the nonlinear control law we supposed that all states are 
measurable. Some numerical simulation results for the controlled system are also presented. 
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1. INTRODUCTION 

The study of system dynamics resides in modelling its 
behaviour. Systems models are simplified, abstracted 
structures used to predict the behaviour of the studied 
systems. Our interest is pointing towards the obtaining of 
mathematical model used to predict certain aspects of the 
system response to the inputs. In mathematical notations, 
a system model is described by a set of ordinary 
differential equations in terms of state variables and a set 
of algebraic equations that relate the state variable to 
other system variables (Karnopp and Rosenberg (1974)).    

In order to model a system, it is usually necessary to 
decompose the system into smaller parts - subsystems - 
that can be modelled separately. The subsystem is a part 
of a system that can be modelled as the system itself 
obtaining submodels. The overall model can then be built 
up by combining the separate submodels. System models 
can be constructed using a uniform notation for all types 
of physical systems, which is the Bond Graph method 
based on energy and information flow (Karnopp and 
Rosenberg (1974), Thoma (1975), Dauphin-Tanguy 
(2000)). Using this method it is possible to develop 
models of electrical, mechanical (Pastravanu and 
Ibanescu (2001), Damic and Montgomery (2002), 
Gawthrop and Bevan (2007)), magnetic, hydraulic, 
pneumatic, thermal, and other systems using a small set of 
variables.  

The method uses the effort-flow analogy to describe 
physical processes. A Bond Graph consists of subsystems 
linked together by lines representing power bonds. Each 
process is described by a pair of variables, effort (e) and 
flow (f), and their product is the power. The direction of 
power is depicted by a half arrow.  

In a dynamic system the effort and the flow variables, and 
hence the power fluctuate in time. It is remarkable how 
models of various systems belonging to different 
engineering domains can be express using a set of only 
nine elements, called elementary components. These 

elements are sufficient to describe any physical system 
regardless of the energy types processed by it (Karnopp 
and Rosenberg (1974)).  

A classification of Bond Graph elements can be made up 
by the number of ports. The ports are places where 
interactions with other processes take place. There are one 
port elements represented by inertial elements (I), 
capacitive elements (C), resistive elements (R), effort 
sources (SE) and flow sources (SF), two ports elements 
represented by transformer elements (TF) and gyrator 
elements (GY), and multi ports elements - effort junctions 
(J0) and flow junctions (J1).  

The concept of causality is an important concept 
embedded in Bond Graph theory. This refers to cause 
(input) and effect (output) relationship. Thus, as part of 
the Bond Graph modelling process, a causality 
assignment is implicitly introduced and it is graphically 
represented by a short stroke, called causal stroke, placed 
perpendicular to the bond at one of its ends indicating the 
direction of the effort variable. Causal stroke assignment 
is independent of the power flow direction. This leads to 
the description of Bond Graphs in the form of state – 
space equations.  

Besides the power variables, two other types of variables 
are very important in describing dynamic systems and 
these variables, sometimes called energy variables, are the 
generalized momentum (p) as time integral of effort and 
the generalized displacement (q) as time integral of flow 
(Karnopp and Rosenberg (1974), Thoma (1975)). 

A largely used method for the control of nonlinear 
systems is to calculate a linear controller for the linear 
approximation of the nonlinear system around an 
operating point. This kind of control works in a small 
neighbourhood of the operating point, and when the 
system is far from this point, the linear controller will not 
have the desired behaviour. Another strategy, the 
feedback linearization (Isidori (1995)) is a good technique 
because the nonlinear system is transformed into a linear 



 
 

     

 

system and only then a linearizing controller is applied. 
Therefore, a controller designed by using feedback 
linearization is working in any point, not only in a small 
neighbourhood of the operating point. 

In this paper, the Bond Graph modelling method is 
applied to the Quanser Inverted Pendulum experiment. 
Also, the method of nonlinear control and state feedback 
linearization is applied to this system in order to achieve a 
control law. The obtained nonlinear law, together with our 
nonlinear system, achieves input-output linearization 
(Bobasu et al. (1998a,b), Bodson et al. (1994), Fossard 
and Normand-Cyrot (1993), Raumer et al. (1994)). By 
using the feedback linearizing techniques, it is established 
a nonlinear control law so that the input-output behaviour 
of closed loop system is the same as those of a linear 
system. 

2. BOND GRAPH MODEL OF THE INVERTED 
PENDULUM 

The Inverted Pendulum experiment consisting of a rotary 
plant module and a pendulum arm is depicted in Fig. 1. 

 
Fig. 1. Quanser Inverted pendulum system 

This experiment consists of a SRV02 rotary plant module 
and a pendulum module. The SRV02 rotary plant module 
serves as the base component for the rotary family of 
experiments. Its modularity facilitates the change from 
one experimental setup to another and it consists of a DC 
motor in a solid aluminium frame equipped with a 
gearbox whose output drives external gears.  

The pendulum module is attached to the SRV02 load gear 
by two thumbscrews. The Inverted Pendulum experiment 
is a classical example of how the use of control may be 
employed to stabilize an inherently unstable system. It is 
also an accurate model in the pitch and yaw of a rocket in 
flight and can be used as a benchmark for many control 
methodologies. 

The goal of this section is to model the Quanser Rotary 
Inverted Pendulum experiment using a systematic way of 
building it in small steps (Damic and Montgomery 
(2002)).  

A first step is to write a word Bond Graph which contains 
words instead of standard symbols for the main 
components, and bonds for power and signal exchange.  

The next step is to replace words by standards elements 
which contain precise mathematical or functional 
relations. When the Bond Graph model is done, it is 

possible to formulate the state space equations starting 
from the constitutive relations of elements. 

We proceed to the design of the Bond Graph model by 
identifying the system components and connecting them 
as they are in the real system (see Damic and 
Montgomery (2002)): 

DC Motor Gear Inverted pendulumInput Output
 

Fig. 2. Word Bond Graph of the system 

The gyrator GY from the DC Motor component describes 
the electromechanical conversion in the motor relating the 
back electromechanical force (emf) from the electrical 
part to the angular velocity of the rotor from the 
mechanical part, respectively the armature current from 
the electrical part to the torque acting on the rotor. For 
this reason, the gyrators are called overcrossed 
transformers.  
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where: kt is the motor torque constant, and km is the back 
emf constant. 

The electrical process in the armature is described in 
Bond Graph terms by the armature resistance aR  
represented using a resistive element (R), and the 
armature inductance aL  represented using an inertial 
element (I). These two elements are joined through an 1 
junction. The mechanical process is also described using 
an inertial element that models the rotation of the rotor 
mass moment of inertia mJ , and a resistive element that 
models the linear friction coefficient mB . These two 
elements are joined through an 1 junction. The gearbox 
named Gear is represented by a transformer (TF) element 
having its parameter equal to the reduction ratio of the 
gearbox, an inertial element, representing the equivalent 
high gear inertia gJ  and a resistive element to model the 
viscous friction forces. 

In order to model the component Pendulum it is required 
to write the equations of motion of inverted pendulum. 
Fig. 3 depicts the pendulum in motion, where α  is the 
pendulum arm deflection and θ  the servo load gear angle  
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Fig. 3. Top and side of the inverted pendulum in motion 
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We shall begin the derivation by examining the velocity 
of the pendulum centre of mass. As it can be seen in Fig. 
3, there are two components for the velocity of the 
pendulum lumped mass: 

ylxlv pcm ˆ)(sinˆ)(cos αα−αα−= &&                         (2) 

We also know that the pendulum arm is moving with the 
rotating arm at a rate of: 

θ= &rvarm                                                                        (3) 

Using (2) and (3) the velocities for x-direction and y-
direction are given by (4): 
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We used the above three equations (2), (3) and (4) in 
order to model the dependencies between the velocities 
involved in the system θ& , armv , α& , x&  and y&  in the Bond 
Graph model presented in Fig. 4. Thus the angular 
velocity with respect to rotational gear and the velocity of 
the pendulum arm are related using a transformer 
element, a modulated one, with the transformer modulus 

rk =1  (the pendulum arm length).  

Other two modulated transformers were used to relate the 
angular velocity of the pendulum, α& , with the velocities 
on the x-direction, x& , and y-direction, y& . These elements 
are characterized by )cos(2 α−= lk  and respectively 

)sin(3 α−= lk .  

The Bond Graph model of the Pendulum component also 
contains an inertial element that models the moment of 
inertia of the pendulum and two inertial elements to 
model the pendulum mass over the x and y-directions. The 
weight force G  was modelled using an effort source. 

3. ANALYTICAL MODEL OF INVERTED 
PENDULUM 

The dynamical equations of the system can be also 
obtained by using the Euler-Lagrange formulation, taking 
into account the relations of the velocities of pendulum. 
The potential and kinetic energy are calculated 
considering the gravity for the potential energy and the 
total kinetic energy of the pendulum as the energy of the 
point mass plus the kinetic energy of the pendulum 
rotating about its center of mass. 

The system is characterized by a set of two differential 
equations: 

( ) TmrlmrlJmr =αα−αα+θ+ sincos 22 &&&&&  
 0sinsincos 2 =α−α+αθα−αθ gmlmlmrlmrl &&&&&&  

where l represents length to pendulum’s center mass, m is 
the mass of pendulum arm, r is the rotating arm length, θ  
the servo load gear angle (radians), α  is the pendulum 
arm deflection (radians), J is the pendulum inertia about 
its center of mass and g gravitational acceleration. 

The state space representation has the following form: 

)(,)()( xhyuxgxfx =+=&                                              (5)             

where we choose as state variables 
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For f and g we obtained the following relations:  
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Fig. 4. Bond Graph model of the Inverted Pendulum 
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where we denoted:  

( ) ACxBxE −= 2
22 cos ,  

JmrA += 2 , mrlB = ,  
2mlC = , mglD = . 

As the output variable, the angular position ( )tα  is 
considered:  

( ) ( )txtxhy 2)( =α==   (8) 

4. THE FEEDBACK LINEARIZING METHOD 

We consider the following form of the state space 
equations in the case of nonlinear system:  
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where )(),...,(),(),( 21 xgxgxgxf m  are smooth vector 
fields (see Isidori (1995),  Fossard and Normand-Cyrot 
(1993)). 

The problem of exact linearization via feedback and 
diffeomorphism consists in transforming a nonlinear 
system (9) into a linear one using a state feedback and a 
coordinate transformation of the systems state.  

Let’s introduce now the Lie derivative of the function 
RRxh n →:)(  along the vector field 
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Definition. A multivariable nonlinear system of the form 
(9) has a relative degree } ,...,{ 1 mrr  at a point 0x  if:     
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k
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for all mj ≤≤1 , for all mi ≤≤1 , for all 1−≤ irk , and 

for x  in a neighbourhood of 0x , the mm × matrix: 
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is nonsingular at 0xx = . 

Remark: Let be a SISO nonlinear system of the form (9), 
which has the relative degree r at a point 0x .  

The state feedback: 
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transforms the nonlinear system into a system, whose 
input-output behaviour is the same with a linear system 
having the transfer function: 

( ) rs
sH 1
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Theorem. Let be the nonlinear system of the form (9). 
Suppose the matrix )( 0xg  has rank m. Then the state 
space exact linearization problem is solvable if and only 
if: for each 10 −≤≤ ni , the distribution Gi has constant 
dimension near 0x ; the distribution 1−nG  has dimension 
n ; for each 20 −≤≤ ni , the distribution iG  is 
involutive. 

For system (5) we have: 
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Thus, we see that the system has relative degree 2=r . In 
this situation, the state feedback: 
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transforms the system (5) into a system whose input-
output behavior is identical to that a linear system having 

a transfer function: 2

1)(
s

sH = . 

Imposing on the linear system an additional feedback of 
the form: 

2120 )( xcxcv ref &−−α=                                                (15) 

then, the obtained system has a linear input-output 
behavior, described by the following  transfer function 
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In relation (15) refα  is the imposed reference of the arm 
deflection.  

The coefficients 10 , cc  in (16) are determined using a 
pole placement procedure. The values of these 
coefficients are chosen such that the behaviour of the 
entire closed loop system has a desired shape (Bobasu et 
al. (1998a)).  

 



 
 

     

 

5.  SIMULATION RESULTS 

In order to test the behaviour and the performance of the 
proposed nonlinear control strategy, extensive simulations 
were performed using the Quanser Inverted Pendulum 
experiment.  

The values of the inverted pendulum parameters are: 

22 m/s9.81g;kgm0.0015J

;35.0;158.0;128.0

==

=== mlmrkgm
 

The design parameters are set to: 

1000 =c , 141 =c  

Fig. 5 presents the time evolution of the pendulum arm 
deflection α  (in radians) for 0=α ref . 
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Fig. 5. Time evolution of pendulum arm deflection 

It can be seen that the behaviour of the controlled system 
is quite good, and the inverted pendulum is stabilized.  

In Fig. 6 the time profile of the angular velocity α&  is 
shown.  
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Fig. 6. Time evolution of pendulum angular velocity α&  

 

6. CONCLUSIONS 

In this paper our interest was pointed towards the Bond 
Graph modelling and the design of feedback linearizing 
technique for an Inverted Pendulum system. 

The Bond Graph model of the system was built up writing 
first the word Bond Graph containing words instead of 
standard symbols for the main components and bonds for 
power and signal exchange, and then replacing words by 
standards elements which contain precise mathematical or 
functional relations. The system was decomposed into 
three subsystems that were modelled separately. By 
joining together these three models, we obtained the 
complete Bond Graph model of the Quanser Rotary 
Inverted Pendulum system. The model was created and 
simulated using 20sim modelling and simulation 
environment. 

The nonlinear control method based on the feedback 
linearizing technique provides an alternative solution to 
existing classical linear methods. The implementation of 
the method requires a complete knowledge of the state 
variables (or the use of a state observer).  
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